|
|
Detection and Viral Sequence Analysis of Four Lily-infecting Viruses in Beijing |
LU Jing-Tong, KONG Xiang-Feng, LI Jie-Wen, JIA Gui-Xia* |
School of Landscape Architecture/Urban and Rural Ecological Environment Beijing Laboratory/Ministry of Education Forest and Flower Breeding Laboratory/Beijing Key Laboratory of Flower Germplasm Innovation and Molecular Breeding/National Flower Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China |
|
|
Abstract Lilies (Lilium spp.) are susceptible to complex viral infections. Virus detection and sequence analysis are helpful in identifying the types of infecting viruses and revealing viral variations. In this study, based on the conservative gene sequences of Lily symptomless virus (LSV), Lily mottle virus (LMoV), Cucumber mosaic virus (CMV), and Plantago asiatica mosaic virus (PLAMV), 4 pairs of primers were used to establish a multiplex RT-PCR detection method for these 4 viruses by optimizing the PCR extension time. This method was used to sample virus infections in lilies grown in the fields in Beijing. Furthermore, the 4 viral products were isolated for sequencing and alignment to construct a systematic evolutionary tree. The results showed that in the quintuplex RT-PCR reaction, extending the extension reaction time to 90 s resulted in the amplification of all 4 viruses and the 18S rRNA (reference gene). Sampling results indicated that lilies grown in the fields were often co-infected with 2 or more viruses, with detection rates in the order of LSV (100%)>CMV (92.31%)>LMoV (30.77%)>PLAMV (15.38%). Sequence analysis revealed that the average similarity of the isolated viral products to their respective viral sequences was above 84.4%, confirming the identification of the 4 target viruses. Variability analysis of the 4 viruses showed that when CMV was hosted by lilies, it formed a distinct branch, indicating host specificity. LMoV could be divided into 2 branches in the evolutionary relationship, with the experimental isolates belonging to branch Ⅱ. No clear branching patterns were observed for LSV and PLAMV. This study provides technical support for the routine molecular diagnosis and research of lily viral diseases, offering a foundational reference for disease prevention and control.
|
Received: 11 October 2023
|
|
Corresponding Authors:
* gxjia@bjfu.edu.cn
|
|
|
|
[1] 程亮. 2019. 青海省部分地区马铃薯Y病毒cp基因序列分析[J]. 浙江农业学报, 31(11): 1888-1895. (Cheng L.2019. Analysis on cp gene sequences of Potato virus Y from some places in Qinghai province[J]. Acta Agriculturae Zhejiangensis, 31(11): 1888-1895.) [2] 崔连民, 张福进, 朱常香, 等. 2005. 黄瓜花叶病毒山东分离物外壳蛋白基因的克隆及序列分析[J]. 山东农业科学, 4(01): 3-6. (Cui L M, Zhang F J, Zhu C X, et al.Cloning and sequence analysis of coat protein genes of Cucumber mosaic virus extract obtained from Shandong[J]. Shandong Agricultural Science, 4(01): 3-6.) [3] 冯丽婷, 张剑峰, 迟胜起. 2022. 甘薯4种RNA病毒多重RT-PCR检测方法的建立[J]. 华北农学报, 37(04): 206-211. (Feng L T, Zhang J F, Chi S Q.2022. Establishment of a multiplex RT-PCR assay for detection of four sweet potato RNA viruses[J]. Acta Agriculturae Boreali-Sinica, 37(04): 206-211.) [4] 黄静, 王晨一, 兰彬源, 等. 2022. 六种水稻病毒一步法多重RT-PCR快速检测方法的建立[J]. 农业生物技术学报, 30(04): 619-627. (Huang J, Wang C Y, Lan B Y, et al.2022. Establishment of a rapid one-step multiplex RT-PCR detection method for six rice viruses[J]. Journal of Agricultural Biotechnology, 30(04): 619-627.) [5] 黎昊雁, 吴姗, 张晓峰, 等. 2006. 复合RT-PCR方法同步检测百合X病毒、百合无症病毒及百合斑驳病毒[J]. 植物保护, 32(6): 42-45. (Li H Y, Wu S, Zhang X F, et al.Detection of Lily virus X, Lily symptomless virus and Lily mottle virus simultaneously by multiplex RT-PCR[J]. Northern Horticulture, 32(6): 42-45.) [6] 李锦超, 董俊美, 孟义江, 等. 2023. 半夏3种花叶病毒的mRT-PCR鉴定及遗传进化分析[J]. 河北农业大学学报, 46(1): 80-87. (Li J C, Dong J M, Meng Y J, et al.mRT-PCR identification and genetic evolution analysis of mosaic viruses in three Pinellia ternata[J]. Journal of Hebei Agricultural University, 2023, 46(1): 80-87.) [7] 李素, 许腾飞, 侯圣凡, 等. 2023. 草莓6种病毒多重PCR快速检测方法的建立[J]. 中国农业大学学报, 28(11): 116-124. (Li S, Xu T F, Hou S F.2023. A multiplex PCR assay for simultaneous detection and identification of six viruses in strawberry[J]. Journal of China Agricultural University, 28(11): 116-124.) [8] 李鑫, 陈雅诗, 朱连, 等. 2017. 进境荷兰百合中车前草花叶病毒的分子鉴定及序列分析[J]. 植物病理学报, 47(02): 197-202. (Li X, Chen Y S, Zhu L, et al.2017. Molecular identification and sequence analysis of Plantago asiatica mosaic virus in lily from Netherlands[J]. Acta Phytopathologica Sinic, 47(02): 197-202.) [9] 李艳利, 马中良, 林杰, 等. 2004. 烟草花叶病毒运动蛋白cDNA的克隆及融合蛋白的表达[J]. 微生物学报, 44(2): 182-184. (Li Y L, Ma Z L, Lin J, et al.2004. Cloning of movement protein cDNA of Tobacco mosaic virus and its expression in Escherichia coli[J]. Acta Microbiologica Sinica, 44(2): 182-184.) [10] 刘文洪, 洪健, 陈集双, 等. 2004. 侵染东方百合的黄瓜花叶病毒两个分离物cp基因克隆和进化分析[J]. 农业生物技术学报, 12(04): 442-445. (Liu W H, Hong J, Chen J S, et al.2004. Cloning and phylogenetic analysis of cp gene for two CMV isolates infecting Lilium cv. Oriental hybrids[J]. Journal of Agricultural Biotechnology, 12(04): 442-445.) [11] 刘欣阳, 谭政. 2023. RNA依赖的RNA聚合酶的结构特征及其靶向抑制剂的开发[J]. 中国生物化学与分子生物学报, 39(03): 413-421. (Liu X Y, Tan Z.2023. Structural features of RNA-dependent RNA polymerases and development of targeted inhibitors[J]. Chinese Journal of Biochemistry and Molecular Biology, 39(3): 413-421.) [12] 王冲, 陈集双, 洪健, 等. 2006. 以18S rRNA为内参照的多重RT-PCR检测3种百合病毒[J]. 植物病理学报, (03): 204-211. (Wang C, Chen J, Hong J, et al. 2006. Optimization and application of a multiplex RT-PCR system for simultaneous detection of three lily viruses using 18S rRNA as internal control[J]. Acta Phytopathologica Sinic, (03): 204-211.) [13] 徐品三, 刘纪文, 高晓蓉, 等. 2012. 百合无症病毒衣壳蛋白基因克隆和蛋白分析[J]. 大连理工大学学报, 52(04): 476-480. (Xu P S, Liu J W, Gao X R, et al.2012. LSV coat protein genes cloning and protein analyses[J]. Journal of Dalian University of Technology, 52(04): 476-480.) [14] 张春雨, 李小宇, 王晨, 等. 2023. 百合斑驳病毒靖宇分离物全基因组序列测定与进化分析[J]. 北方园艺, (24): 59-64. (Zhang C Y, Li X Y, Wang C, et al.2023. Sequencing and analysis of the genome of Lily mottle virus (LMoV) Jingyu isolate[J]. Northern Horticulture, (24): 59-64.) [15] Agoston J, Almasi A, Salanki K, et al.2020. Genetic diversity of potyviruses associated with tulip breaking syndrome[J]. Plants, 9(12): 1807. [16] Asjes C J.2000. Control of aphid-borne Lily symptomless virus and Lily mottle virus in Lilium in the Netherlands[J]. Virus Research, 71(1-2): 23-32. [17] Che Y K, Derk A F, Langeveld S, et al.2001. High sequence conservation among Cucumber mosaic virus isolates from lily[J]. Archives of Virology, 146(8): 1631-1636. [18] Cohen J, Gera A, Loebenstein G, et al.1996. Virus diseases of lilies in Israel[J]. Acta Horticulturae, 432: 84-87. [19] Gao Z, Pu H, Liu J,et al.2020. Tobacco necrosis virus-AC single coat protein amino acid substitutions determine host-specific systemic infections of Nicotiana benthamiana and soybean[J]. Molecular Plant-Microbe Interactions, 34(1): 49-61. [20] He Y, Gao F, Shen J, et al.2018. A multiplex RT-PCR method for the simultaneous detection of Narcissus yellow stripe virus, Narcissus latent virus and Narcissus mosaic virus[J]. Canadian Journal of Plant Pathology, 159: 3095-3099. [21] Kumar R, Jeevalatha A, Baswaraj R, et al.2017. A multiplex RT-PCR assay for simultaneous detection of five viruses in potato[J]. Journal of Plant Pathology, 99(1): 37-45. [22] Kwon J Y, Ryu K H, Choi S H.2013. Reverse transcription polymerase chain reaction-based system for simultaneous detection of multiple lily-infecting viruses[J]. The Plant Pathology Journal, 29(3): 338-43. [23] Lim M S, Min D J, Hong J S, et al.2021. Simultaneous detection of four lily-infecting viruses by a multiplex RT-PCR assay[J]. Journal of General Plant Pathology, 87: 219-224. [24] Opiyo S A, Ateka E, Owuor P, et al.2010. Development of a multiplex PCR technique for simultaneous detection of Sweet potato feathery mottle virus and Sweet potato chlorotic stunt virus[J]. Journal of Plant Pathology, 92(2): 363-366. [25] Peng Q, Qiu L, Yang T.et al.2020. A multiple reverse transcription PCR assay for simultaneous detection of four main viruses in kiwifruit[J]. European Journal of Plant Pathology, 156: 1207-1212. [26] Rivas E B, Almeida E C, Harakava R, et al.2016. Occurrence and molecular analysis of quarantine virus in lily cultivation areas in Brazil[J]. Pesquisa Agropecuaria Brasileira, 51(5): 615-622. [27] Scholthof K G, Adkins S, Czosnek H, et al.2011. Top 10 plant viruses in molecular plant pathology[J]. Molecular Plant Pathology, 12(9): 938-954. [28] Sheshukova E V, Ershova N M, Kamarova K A, et al.2020. The tobamoviral movement protein: A "Conditioner" to create a favorable environment for intercellular spread of infection[J]. Frontiers in Plant Science, 11: 959. [29] Xu L, Ming J.2022. Development of a multiplex RT-PCR assay for simultaneous detection of Lily symptomless virus, Lily mottle virus, Cucumber mosaic virus, and Plantago asiatica mosaic virus in Lilies[J]. Virology Journal, 19(1): 219. [30] Xue B, Shang J, Yang J, et al.2021. Development of a multiplex RT-PCR assay for the detection of Soybean mosaic virus, Bean common mosaic virus and Cucumber mosaic virus in field samples of soybean[J]. Journal of Virological Methods, 298: 114278. [31] Zhang Y, Wang Y, Xie Z, et al.2018. The occurrence and distribution of viruses infecting Lanzhou lily in northwest[J]. Crop Protection, 110: 73-76. |
|
|
|