|
|
Construction of Plant Elicitor Peptide Engineering Strain and Its Control Effect on Cotton (Gossypium hirsutum) Verticillium Wilt |
YIN Ming-Shen, WU Guo-Han, LEI Sheng-Wei, WANG Yu, NIU Qiu-Hong* |
College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China |
|
|
Abstract Cotton verticillium wilt has always been an important obstacle to the sustainable development of China's cotton (Gossypium hirsutum) industry. It has been shown that plant elicitor peptide (Pep) can promote immune responses in multiple plant families against many kinds of pathogens. The purpose of this study was to construct an engineering strain of plant immune-inducing peptide for cotton verticillium wilt, and explore the antibacterial effect of protein-inducing peptide after activating plant immunity, then screen the engineering strain with good control effect on cotton verticillium wilt. Firstly, the plant immune-inducing protein genes PEL1 (pectate lyase 1) and PevD1 (protein elicitor 1) in Verticillium dahliae, a pathogenic bacterium of cotton wilt disease, were cloned, and the recombinant plasmids pHT43-PEL1 and pHT43-PevD1 were constructed. After being verified by enzyme digestion and sequencing, the plasmid was introduced into Bacillus sp. T6, which was screened in the early study, to construct engineering strain. The heterologous expression of the immune-inducing peptide was verified by SDS-PAGE, and the activity of the pot experiment was verified, so as to further confirm the engineering strain with efficient control of cotton verticillium wilt. The results of SDS-PAGE showed that the 2 inducible peptides were successfully overexpressed in T6 strain, and the engineering strain V3-T with PEL1 overexpression and the engineering strain P18-T with PevD1 overexpression were obtained respectively. The engineering strain P18-T was injected into the leaves of cotton plants for 15 min, and the active oxygen content increased significantly (P<0.01). In the cotton pot experiment, the engineering strain P18-T acted on the susceptible cotton plants for 30 d. Compared with the control wild strain T6 group, the incidence of cotton verticillium wilt in the P18-T treatment group decreased significantly (P<0.05), and the control effect reached to 78.85% (P<0.05). In this study, an engineering strain P18-T with high efficiency against cotton verticillium wilt was obtained, which provides basic data for broadening the comprehensive prevention and control technology of cotton verticillium wilt.
|
Received: 02 August 2023
|
|
Corresponding Authors:
* qiuhongniu723@163.com
|
|
|
|
[1] 卜冰武, 邱德文, 曾洪梅, 等. 2014. 大丽轮枝菌蛋白激发子PevD1诱导棉花抗病性及作用机理[J]. 植物病理学报, 44(03): 254-264. (Bu B W, Qiu D W, Zeng H M, et al.2014. Induced resistance and mechanism of protein elicitor PevD1 against Verticillium dahliae in cotton[J]. Acta Phytopathologica Sinica, 44(03): 254-264.) [2] 贾丰莲, 李泽, 梁颖博, 等. 2020. 大丽轮枝菌蛋白激发子PevD1激活本生烟促分裂原活化蛋白激酶MAPK[J]. 生物技术通报, 36(10): 15-24. (Jia F L, Li Z, Liang Y B, et al.2020. Verticillium dahliae elicitor PevD1 activates MAPKs in Nicotiana benthamiana[J]. Biotechnology Bulletin, 36(10): 15-24.) [3] 刘太国, 李永镐, 陈万权. 2005. 水杨酸对感染TMV烟草叶片PAL活性的影响[J]. 西北农林科技大学学报(自然科学版), (S1): 111-114. (Liu T G, Li Y H, Chen W Q.2005. Effects on the PAL activity in tobacco leaves after treated with salicylic acid and inoculated with Tobacco mosaic virus[J]. Journal of Northwest A & F University (Natural Science Edition), (S1): 111-114.) [4] 李莉, 郭晓丽, 刘晓梅, 等. 2009. β-氨基丁酸诱导水稻稻瘟病抗性对活性氧代谢的影响(英文)[J]. 安徽农业科学, 10(03): 112-114. (Li L, Guo X L, Liu X M, et al.2009. Effect of β-aminobutyric acid induced resistance to rice blast on reactive oxygen metabolism in rice[J]. Agricultural Science & Technology, 10(03): 112-114.) [5] 李瑞芳, 薛雯雯, 黄亮, 等. 2011. 枯草芽孢杆菌感受态细胞的制备及质粒转化方法研究[J]. 生物技术通报, (05): 227-230. (Li R F, Xue W W, Huang L, et al. 2011. Competent preparation and plasmid transformation of Bacillus subtilis[J]. Biotechnology Bulletin, (05): 227-230.) [6] 吕宁, 石磊, 刘海燕, 等. 2019. 生物药剂滴施对棉花黄萎病及根际土壤微生物数量和多样性的影响[J]. 应用生态学报, 30(02): 602-614. (Lv N, Shi L, Liu H Y, et al.2019. Effects of biological agent dripping on cotton verticillium wilt and rhizosphere soil microorganism[J]. Chinese Journal of Applied Ecology, 30(02): 602-614.) [7] 苗立祥, 杨肖芳, 张豫超, 等. 2021. 植物免疫诱导剂在草莓中的应用情况[J]. 蔬菜, (01): 24-28. (Miao L X, Yang X F, Zhang Y C, et al. 2021. Application situation of plant immune inducers in strawberry[J]. Vegetables, (01): 24-28.) [8] 邱德文. 2016. 我国植物免疫诱导技术的研究现状与趋势分析[J]. 植物保护, 42(05): 10-14. (Qiu D W.2016. Research status and trend analysis of plant immune induction technology in China[J]. Plant Protection, 42(05): 10-14.) [9] 孙艳, 张学坤, 王振辉, 等. 2018. 滴灌条件下木霉菌厚垣孢子制剂防治棉花黄萎病试验[J]. 江苏农业科学, 46(10): 89-92. (Sun Y, Zhang X K, Wang Z H, et al.2018. Experimental study on the prevention and control of cotton verticillium wilt with trichoderma thixospore preparation under drip irrigation conditions[J]. Jiangsu Agricultural Sciences, 46(10): 89-92.) [10] 盛世英, 周强, 邱德文, 等. 2017. 植物免疫蛋白制剂阿泰灵诱导小麦抗病增产效果及作用机制[J]. 中国生物防治学报, 33(02): 213-218. (Sheng S Y, Zhou Q, Qiu D W, et al.2017. Effects and mechanism of disease resistance and yield improvement induced by plant immune protein preparation ATailing in wheat[J]. Chinese Journal of Biological Control, 33(02): 213-218.) [11] 宋雯, 王春巧, 俞燕, 等. 2019. 棉花黄萎病菌鸟氨酸脱羧酶抗酶蛋白基因VdOAZ的功能分析[J]. 棉花学报, 31(02): 101-113. (Song W, Wang C Q, Yu Y, et al.2019. Functional analysis of an ornithine decarboxylase antizyme gene VdOAZ in Verticillium dahliae isolated from cotton[J]. Cotton Science, 31(02): 101-113.) [12] 陶冶. 2021. 棉花黄萎病拮抗混合菌群的构建及其活性因子研究[D]. 硕士学位论文, 南阳师范学院, 导师: 牛秋红, 黄小权, pp. 18, 54-55. (Tao Y.2021. Construction of antagonistic multiple bacteria against verticillium wilt and exploration on their active factors[D]. Thesis for M.S., Nanyang Normal University, Supervisor: Niu Q H, Huang X Q, pp. 18, 54-55.) [13] 王珏. 2022. 棉花黄萎病发病成因与预防治理策略的经济效益[J]. 中国纤检, (07): 47-50. (Wang J. 2022. Causes of cotton verticillium wilt and economic benefits of prevention and management strategies[J]. China Fiber Inspection, (07): 47-50.) [14] 韦学平, 苏江华, 罗刚, 等. 2022. 植物免疫诱抗剂对烤烟青枯病的诱导抗性及防控效果[J]. 贵州农业科学, 50(05): 8-14. (Wei X P, Su J H, Luo G, et al.2022. Inductive resistance and control effect of various plant immune inducers against tobacco bacterial wilt[J]. Guizhou Agricultural Sciences, 50(05): 8-14.) [15] 席征, 程新胜, 杨丽文, 等. 2007. 茉莉酸甲酯诱导烟草抗斜纹夜蛾的作用[J]. 烟草科技, (03): 51-55. (Xi Z, Cheng X S, Yang L W, et al.2007. Effects of methyl jasmonate induced tobacco resistance to Spodoptera litura (F.)[J]. Tobacco Science & Technology, (03): 51-55.) [16] 徐娅, 谢成建, 杨星勇. 2019. 棉花黄萎病生物防治研究进展[J]. 安徽农业科学, 47(02): 18-22. (Xu Y, Xie C J, Yang X Y.2019. Research progresses on biological control of cotton verticillium wilt[J]. Journal of Anhui Agricultural Sciences, 47(02): 18-22.) [17] 徐永洞. 2018. 昆虫抗菌肽枯草芽孢杆菌工程菌构建[D]. 硕士学位论文, 南昌大学, 导师: 朱建航, pp. 53-58. (Xu Y D.2018. Construction of insect cathelicidin engineering strain of Bacillus subtilis[D]. Thesis for M.S., Nanchang University, Supervisor: Zhu J H, pp. 53-58.) [18] 杨远坤. 2019. 大丽轮枝菌果胶裂解酶VdPEL1诱导植物免疫和致病性的功能分析[D]. 硕士学位论文, 中国农业科学院, 导师: 邱德文, pp. 41-45. (Yang Y K.2019. The functional analysis of inducing plant immunity and pathogenicity of a pectate lyase VdPEL1 from Verticillim dahliae[D]. Thesis for M.S, Chinese Academy of Agricultural Sciences, Supervisor: Qiu D W, pp. 41-45.) [19] 遇文婧. 2020. 深绿木霉刺激植物响应蛋白TatEpl1诱导杨树系统抗病性机制[D]. 博士学位论文, 东北林业大学, 导师: 王志英, 刘志华, pp. 43-85. (Yu W J.2020. The mechanism of Trichoderma atrovirite stimulating plant response protein TatEpl1 to induce disease resistance in poplar system[D]. Thesis for Ph.D., Northeast Forestry University, Supervisors: Wang Z Y, Liu Z H, pp. 43-85.) [20] 张清华, 韩永亮, 米换房, 等. 2023. 2015-2021年国家审定黄河流域棉花品种抗病性分析[J]. 中国棉花, 50(03): 24-28. (Zhang Q H, Han Y L, Mi H F, et al.2023. Analysis on disease resistance of national approved cotton varieties in the Yellow River Basin from 2015 to 2021[J]. China Cotton, 50(03): 24-28.) [21] Ma Y N, Han C, Chen J Y, et al.2015. Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity[J]. Molecular Plant Pathology, 16(1): 14-26. [22] Niu Q H, Tian Y X, Zhang L, et al.2012. Overexpression of the key virulence proteases Bace16 and Bae16 in Bacillus nematocida B16 to improve its nematocidal activity[J]. Journal of Molecular Microbiology and Biotechnology, 21(3-4): 130-137. [23] St Leger R J, Joshi L, Bidochka M J, et al.1996. Construction of an improved mycoinsecticide overexpressing a toxic protease[J]. Proceedings of the National Academy of Sciences of the USA, 93(13): 6349-6354. [24] Wang B N, Yang X F, Zeng H M, et al.2012. The purification and characterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco[J]. Applied Microbiology and Biotechnology, 93(1): 191-201. [25] Wang C X, Huang Z, Duan Z Z, et al.2023. Pectate lyase from Fusarium sacchari induces plant immune responses and contributes to virulence[J]. Microbiology Spectrum, 11(3): e0016523. [26] Yang B, Yang S, Zheng W Y, et al.2022. Plant immunity inducers: From discovery to agricultural application[J]. Stress Biology, 2(1): 5. [27] Yang Y K, Zhang Y, Li B B, et al.2018. A Verticillium dahliae pectate lyase induces plant immune responses and contributes to virulence[J]. Frontiers in Plant Science, 9: 1271. [28] Zhang L, Wang Y, Lei S W, et al.2023. Effect of volatile compounds produced by the cotton endophytic bacterial strain Bacillus sp. T6 against verticillium wilt[J]. BMC Microbiology, 23(1): 8. [29] Zhou J Y, Jang C Q, Qiu S S, et al.2023. An Ustilaginoidea virens glycoside hydrolase 42 protein is an essential virulence factor and elicits plant immunity as a PAMP[J]. Molecular Plant Pathology, 24(11): 1414-1429. |
[1] |
ZHANG Jing-Jing, WANG Min, ZHAO Gang-Yi, BIAN Yin-Bo, LIU Na, ZHANG Dong-Dong, HOU Chun-Yan, HAN Sheng-Fang, WANG Dong-Mei. Control of Wheat Sharp Eyespot by Combination of Bacillus subtilis Z-14 Spore Preparation and Kuras[J]. 农业生物技术学报, 2023, 31(1): 146-155. |
|
|
|
|