|
|
Identification of Solute Carrier 6 (SLC6) Gene Family of Sinonovacula rivularis and Its Expression Analysis Under Salinity Stress |
WANG Sha-Sha1, YAO Han-Han1,*, HE Lin1, HE Jing2, DONG Ying-Hui2, LIN Zhi-Hua2,* |
1 College of Biological & Environmental Sciences, Key Laboratory of Aquatic Germplasm Resource of Zhejiang, Zhejiang Wanli University, Ningbo 315100, China; 2 Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China |
|
|
Abstract The solute carrier 6 (SLC6) gene family, known as neurotransmitter transporters, plays a crucial role in stress regulation and osmotic regulation of aquatic organisms. In the present study, the members of the SLC6 gene family of Sinonovacula rivularis (SrSLC6) were identified and analyzed by using bioinformatics methods, and expression patterns under salinity stress were investigated. The results showed that a total of 29 SrSLC6 genes were identified, which belonged to 4 subfamilies and contained 12 conserved motifs and 2 conserved domains SLC6sbd-TauT-like and SLC5-6-like_sbd. Under high and low salinity stress, 16 SrSLC6 gene family members showed different expression responses and their expression levels were up-regulated or down-regulated. Amino acid transporter 4 protein of S. rivularis (SrAAT4) related to salinity adaptation was mainly located in lateral ciliated columnar cells and flat cells on the side of gill filaments, and the expression patterns showed the same trend as transcriptome expression profile, which was significantly decreased at different time points under low salt stress (P<0.05), and significantly increased at different time points under high salt stress (P<0.05). These results indicated that the amino acid transporters (AATs) and neurotransmitter transporters (NTTs) members of SrSLC6 gene family might played important roles in osmotic regulation of S. rivularis, which provided theoretical basis for further research on the osmotic regulation and salinity adaptation of SLC6 gene family in mollusks.
|
Received: 06 April 2023
|
|
Corresponding Authors:
* yaohanhan@zwu.edu.cn; zhihua9988@126.com
|
|
|
|
[1] 庚宸帆. 2016. 刺参盐度调节相关基因的定量表达及组织学分析[D]. 硕士学位论文, 大连海洋大学, 导师: 田燚, pp. 33-34. (Geng C F.2016. Analysis on salinity related genes expression and histological structure of Apostichopus japonicus[D]. Thesis for M.S., Dalian Ocean University, Supervisor: Tian Y, pp. 33-34.) [2] 黄标武, 黄瑞, 杨淑婷, 等. 2021. 近江蛏工厂化人工育苗技术[J]. 渔业研究, 43(6): 628-634. (Huang B W, Huang R, Yang S T, et al.2021. The technology of artificial seedling cultivation of Sinonovacula rivularis[J]. Journal of Fisheries Research, 43(6): 628-634.) [3] 黄瑞, 艾春香, 林旭吟, 等. 2014. 福建长乐海域近江蛏营养成分分析与品质评价[J]. 应用海洋学学报, 33(1): 96-104. (Huang R, Ai C X, Lin X Y, et al.2014. Nutritional component analysis and quality evaluation of Sinonovacula rivularis from Changle sea area of Fujian[J]. Journal of Applied Oceanography, 33(1): 96-104.) [4] 黄瑞, 黄标武, 李林春, 等. 2011. 近江蛏精子超微形态结构观察及与缢蛏精子的比较[J]. 水产学报, 35(1): 58-65. (Huang R, Huang B W, Li L C.2011. Comparative ultrastructure of spermatozoa of Sinonovacula rivularis sp. nov. and sinonovacula constricta[J]. Journal of Fisheries of China, 35(1): 58-65.) [5] 黄瑞, 黄标武, 吴剑锋, 等. 2010. 环境因子对近江蛏幼贝存活率和生长影响的初步试验[J]. 水产科技情报, 37(5): 218-222. (Huang R, Huang B W, Wu J F, et al.2010. Effects of environmental factors on survival rate and growth of juvenile Sinonovacula rivularis[J]. Fisheries Science and Technology Information, 37(5): 218-222.) [6] 黄瑞, 张云飞. 2007. 缢蛏属一新种[J]. 台湾海峡, 26(1): 115-120. (Huang R, Zhang Y F, 2007. A new species of the genus Sinonovacula[J]. Journal of Oceanography in Taiwan Strait, 26(1): 115-120.) [7] 黄瑞, 张云飞, 林旭吟, 等. 2012. 近江蛏养殖生物学的初步研究[J]. 集美大学学报: 自然科学版, 17(6): 401-407. (Huang R, Zhang Y F, Lin X Y, et al.2012. Culture biology of Sinonovacula rivularis sp. nov[J]. Journal of Jimei University: Natural Science, 17(6): 401-407.) [8] 蒋亚男, 田燚, 李晓雨, 等. 2018. 盐度应激下刺参4个转运相关基因的适应表达研究[J]. 大连海洋大学学报, 33(6): 696-702. (Jiang Y N, Tian Y, Li X Y, et al.2018. Adaptative expression of four transporter-related genes in sea cucumber Apostichopus japonicus exposed to salinity stress[J]. Journal of Dalian Ocean University, 33(6): 696-702.) [9] 梁萌青, 王士稳, 王家林, 等. 2009. 不同盐度对凡纳滨对虾血淋巴及肌肉游离氨基酸组成的影响[J]. 渔业科学进展, 30(2): 34-39. (Liang M Q, Wang S W, Wang J L, et al.2009. Effects of different salinities on free amino acid composition in muscle and hemolymph of the shrimp Litopenaeus vannamei[J]. Progress in Fishery Sciences, 30(2): 34-39.) [10] 林丽华, 廖文崇, 谢健文, 等. 2012. 盐度对香港巨牡蛎摄食和代谢的影响[J]. 广东农业科学, 39(11): 10-14. (Lin L H, Miao W C, Xie J W, et al.2012. Effect of salinity on the feeding and metabolic physiology of Crassostrea hongkongensis[J]. Guangdong Agricultural Sciences, 39(11): 10-14.) [11] 王莎莎. 2023. 近江蛏耐盐能力评价及相关基因研究[D]. 硕士学位论文, 浙江万里学院, 导师: 林志华. pp. 22-53. (Wang S S.2023. Evaluation of salt tolerance and related gene research of razor clam (Sinonovacula rivularis) [D]. Thesis for M. S., Zhejiang Wanli University, Supervisor: Lin Z H. pp. 22-53.) [12] 翁朝红, 谢仰杰, 肖志群, 等. 2013. 线粒体CO Ⅰ和16S rRNA片段确定近江蛏和缢蛏属的分类地位[J]. 水生生物学报, 37(4): 684-690. (Weng Z H, Xie Y J, Xiao Z Q, et al.2013. Molecular identification of the taxonomic status of Sinonovacula rivularis and genus Sinonovacula using mitochondrial CO Ⅰ and 16S rRNA fragments[J]. Acta Hydrobiologica Sinica, 37(4): 684-690.) [13] 郑伟贤. 2012. 鲈鱼TauT基因的cDNA克隆及组织表达[D]. 硕士学位论文, 宁波大学, 导师: 钱云霞. pp.38-42. (Zheng W X.2012. Cloning of cDNA and expression analysis of TauT in Lateolabrax japonicus[D]. Thesis for M.S., Ningbo University, Supervisor: Qian Y X, pp.38-42.) [14] Aroeira R I, Sebastião A M, Valente C A.2014. GlyT1 and GlyT2 in brain astrocytes: Expression, distribution and function[J]. Brain Structure and Function, 219(3): 817-830. [15] Boudko D Y.2012. Molecular basis of essential amino acid transport from studies of insect nutrient amino acid transporters of the SLC6 family (NAT-SLC6)[J]. Journal of Insect Physiology, 58(4): 433-449. [16] Bregante M, Carpaneto A, Piazza V, et al.2016. Osmoregulated chloride currents in hemocytes from Mytilus galloprovincialis[J]. PLOS ONE, 11(12): e0167972. [17] Bröer S.2006. The SLC6 orphans are forming a family of amino acid transporters[J]. Neurochemistry International, 48(6-7): 559-567. [18] Bröer S, Gether U.2012. The solute carrier 6 family of transporters[J]. Britain Journal of Clinical Pharmacology, 167(2): 256-278. [19] Bröer S, Palacín M.2011. The role of amino acid transporters in inherited and acquired diseases[J]. Biochemical Journal, 436(2): 193-211. [20] Cappello T, Maisano M, Giannetto A, et al.2019. Pen shell Pinna nobilis L. (Mollusca: Bivalvia) from different peculiar environments: Adaptive mechanisms of osmoregulation and neurotransmission[J]. European Zoological Journal, 86(1): 333-342. [21] Chen C J, Chen H, Zhang Yet al.2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 13(8): 1194-1202. [22] Chen N H, Reith M E A, Quick M W.2004. Synaptic uptake and beyond: The sodium- and chloride-dependent neurotransmitter transporter family SLC6[J]. Pflugers Archiv-european Journal of Physiology, 447(5): 519-531. [23] D'aniello A.1980. Free amino acids in some tissues of marine Crustacea[J]. Experientia, 36(4): 392-393. [24] Eulenburg V, Hülsmann S.2022. Synergistic control of transmitter turnover at glycinergic synapses by GlyT1, GlyT2, and ASC-1[J]. International Journal of Molecular Sciences, 23(5): 2561. [25] Fredriksson R, Lagerström M C, Lundin L G, et al.2003. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints[J]. Molecular Pharmacology, 63(6): 1256-1272. [26] Fredriksson R, Nordström K J V, Stephansson O, et al.2008. The solute carrier (SLC) complement of the human genome: Phylogenetic classification reveals four major families[J]. Febs Letters, 582(27): 3811-3816. [27] Hediger M A, Romero M F, Peng J B, et al.2004. The ABCs of solute carriers: Physiological, pathological and therapeutic implications of human membrane transport proteins[J]. Pflugers Archiv-european Journal of Physiology, 447(5): 465-468. [28] Ito K, Kidokoro K, Sezutsu H, et al.2008. Deletion of a gene encoding an amino acid transporter in the midgut membrane causes resistance to a Bombyx parvo-like virus[J]. Proceedings of the National Academy of Sciences of the USA, 105(21): 7523-7527. [29] Jacques M Z, Terence M B.2007. Molecular cloning and characterization of the taurine transporter of Atlantic salmon[J]. Aquaculture, 273(2-3): 209-217. [30] Jiang W W, Tian X L, Fang Z H, et al.2019. Metabolic responses in the gills of tongue sole (Cynoglossus semilaevis) exposed to salinity stress using NMR-based metabolomics[J]. Science of the Total Environment, 653(1): 465-474. [31] Kozlowski D J, Chen Z, Zhuang L N, et al.2008. Molecular characterization and expression pattern of taurine transporter in zebrafish during embryogenesis[J]. Life Sciences, 82(19-20): 1004-1011. [32] Kristensen A S, Andersen J, Jørgensen T N, et al.2011. SLC6 neurotransmitter transporters: Structure, function, and regulation[J]. Pharmacological Review, 63(3): 585-640. [33] Lang F.2007. Mechanisms and significance of cell volume regulation[J]. Journal of the American College of Nutritio, 26(5): 613S-623S. [34] Li A, Dai H, Guo X M, et al.2021. Genome of the estuarine oyster provides insights into climate impact and adaptive plasticity[J]. Communications Biology, 4(1): 1287. [35] Luan Z, Quigley C, Li H S.2015. The putative Na?/Cl?-dependent neurotransmitter/osmolyte transporter inebriated in the Drosophila hindgut is essential for the maintenance of systemic water homeostasis[J]. Scientific Reports, 5: 7993. [36] Mchugh E M, Zhu W G, Milgram S, et al.2004. The GABA transporter GAT1 and the MAGUK protein Pals1: Interaction, uptake modulation, and coexpression in the brain[J]. Molecular and Cellular Neuroscience, 26(3): 406-417. [37] Miller M M, Popova L B, Meleshkevitch E A, et al.2008. The invertebrate B-0 system transporter, D. melanogaster NAT1, has unique d-amino acid affinity and mediates gut and brain functions[J]. Insect Biochemistry and Molecular Biology, 38(10): 923-931. [38] Nishimura T, Higuchi K, Yoshida Y, et al.2018. Hypotaurine is a substrate of GABA transporter family members GAT2/Slc6a13 and TAUT/Slc6a6[J]. Biological and Pharmaceutical Bulletin, 41(10): 1523-1529. [39] Perland E, Fredriksson R.2017. Classification systems of secondary active transporters[J]. Trends in Pharmacological Sciences, 38(3): 305-315. [40] Pramod A B, Foster J, Carvelli L, et al.2013. SLC6 transporters: structure, function, regulation, disease association and therapeutics[J]. Molecular Aspects of Medicine, 34(2-3): 197-219. [41] Prideaux M, Kitase Y, Kimble M, et al.2020. Taurine, an osteocyte metabolite, protects against oxidative stress-induced cell death and decreases inhibitors of the Wnt/β-catenin signaling pathway[J]. Bone, 137: 115374. [42] Tang X, Liu H W, Chen Q M, et al.2016. Genome-wide identification, characterization and expression analysis of the solute carrier 6 gene family in silkworm (Bombyx mori)[J]. International Journal of Genomics, 17(10): 1675. [43] Wallimann T, Tokarska-schlattner M, Schlattner U.2011. The creatine kinase system and pleiotropic effects of creatine[J]. Amino Acids, 40(5): 1271-1296. [44] Warskulat U, Heller-stilb B, Oermann E, et al.2007. Phenotype of the taurine transporter knockout mouse[J]. Methods in Enzymology, 428: 439-458. |
|
|
|