|
|
Identification of Bacillus amyloliquefaciens M1-1 and Its Antifungal and Plant Growth Promoting Effects |
WANG Shi-Wei1,*, WANG Qing-Hui2 |
1 College of Life Sciences and Agriculture and Forestry/Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, Qiqihar University, Qiqihar 161006, China; 2 School of Life Science, Northeast Agricultural University, Harbin 150030, China |
|
|
Abstract Baijiu Daqu contains rich microorganisms. Among them, Bacillus amyloliquefaciens can inhibit plant pathogens, be used in biological control, promote plant growth, and have potential application value in agricultural production. In this study, LB medium was used to isolate the B. amyloliquefaciens from Beidacang Baijiu Daqu, and the strain were identified by the morphology and molecular biology such as colony, cell observation, spore staining, 16S rRNA gene sequencing and comparison techniques. This bacterium was the most similar to Bacillus amyloliquefaciens (GenBank No. MG593943.1) with 100% consistency and 95% coverage. It belonged to B. amyloliquefaciens and was named as M1-1 strain. It was submitted to the NCBI website and obtained the GenBank No. OM321552. The inhibitory effects of B. amyloliquefaciens M1-1 antibacterial protein on 4 plant pathogenic fungi, namely Fusarium oxysporum M1, Phacidiopycnis washingtonensis, Gibberella and Rhizoctonia solani, were studied by plate confrontation and Oxford cup methods, respectively. The fermentation broth of B. amyloliquefaciens M1-1 had strong antibacterial effects on all 4 plant pathogens mentioned above, with a antifungal rate ranging from 43% to 61%; In addition to producing protease, B. amyloliquefaciens M1-1 could also produce a variety of antifungal proteins, and the diameter of the inhibitory ring was between 1.8 and 3.0 cm; The pot experiment method was used to study the promoting effect of B. amyloliquefaciens M1-1 on the growth of Bryophyllum pinnatum. The experimental results showed that B. amyloliquefaciens M1-1 had a significant promoting effect on the growth of plants. In summary, this B. amyloliquefaciens M1-1 has good inhibitory effects on various plant pathogens and could be applied to the development and utilization of biocontrol agents, and it also has potential application value in increasing crop yield.
|
Received: 04 April 2023
|
|
Corresponding Authors:
*wsw888535@shou.com
|
|
|
|
[1] 布坎南等. 1984. 伯杰细菌鉴定手册[M]. 北京: 科学出版社, pp. 729-758. (Breed. 1984. Bergey's Manual of Determinative Bacteriology[M]. Science Press, Beijing, China, pp. 729-758.) [2] 陈秋旭, 卫春会, 吴玲等. 2023. 浓香型酒醅中一株高产蛋白酶菌株的鉴定及产酶条件的优化[J]. 食品科技, 48(2): 7-13. (Chen Q X, Wei C H, Wu L, et al.2023. Identification of a strain with high protease production in Luzhou flavor fermented grains and optimization of enzyme production[J]. Food Science and Technology, 48(2): 7-13.) [3] 李丹, 李茸梅, 秦伟英, 等. 2018. 两株解淀粉芽胞杆菌对西瓜枯萎病的防治作用及其相关生防因子检测[J]. 中国生物防治学报, 34(5): 729-737. (Li D, Li R M, Qi W Y, et al.2018. Control effects and related biocontrol factors detection of two Bacillus amyloliquefaciens strains on Watermelon fusarium wilt[J]. Chinese Journal of Biological Control, 34(5): 729-737.) [4] 李永丽, 源春彦, 周洲, 等. 2023. 解淀粉芽孢杆菌菌株P-r21抑菌广谱性及对番茄灰霉病的防治[J]. 中国农学通报,39(6): 105-110. (Li Y L, Yuan C Y, Zhou Z.2023. Bacillus amyloliquefaciens P-r21: Broad-spectrum antibacterial effect and control of tomato gray mold[J]. Chinese Agricultural Science Bulletin, 39(6): 105-110.) [5] 郝秋娟, 李树立, 陈颖, 等. 2008. 温度对淀粉液化芽孢杆菌5582产蛋白酶的影响[J]. 中国酿造, 11(6): 37-39. (Hao Q J, Li S L, et al.2008. Effect of temperature on proteinase production using Bacillus amyloliquefaciens BS5582[J]. China Brewing, 11(6): 37-39) [6] 方中达. 1998. 植病研究方法(第三版)[M]. 北京: 农业出版社, pp. 312-313. (Fang Z D.1998. Research Methods for Plant Diseases (3rd edition)[M]. Agricultural Press of China, Beijing, China, pp. 312-313.) [7] 王世伟, 董原, 李铁, 等. 2006.一种适合抗癌药紫杉醇产生菌AFLP分析的DNA提取方法[J]. 高师理科学刊, 26(1): 60-64. (Wang S W, Dong Y, Li T, et al.2006. The method of DNA effective and quick means for DNA extraction of Taxol producing fungi[J]. Journal of Science of Teachers' College and University, 26(1): 60-64.) [8] 王世伟, 王卿惠, 芦利军, 等. 2017. 白酒酿造微生物多样性,酶系与风味物质形成的研究进展[J]. 农业生物技术学报, 25(12): 2018-2051. (Wang S W, Wang Q H, Lu L J, et al.2017. Research progress of the microbial diversity, enzyme system and formation of flavor compounds in Chinese flavor liquor[J]. Journal of Agricultural Biotechnology, 25(12): 2018-2051.) [9] 王文凡, 刘银秀, 谢晓杰, 等. 2023. 牛粪堆肥中纤维素高效降解菌的筛选与产酶条件优化[J]. 微生物学通报, DOI:10.13344/j.microbiol.china.230219. (Wang W F, Liu Y X, Xie X J, et al.2023. Screening of efficient cellulose degrading bacteria in cow manure compost and optimization of enzyme production conditions[J]. Microbiology China, DOI: 10.13344/j.microbiol.china.230219) [10] 徐小健, 朱宝悦, 李昕悦, 等. 2022. 肽聚糖水解酶基因缺失对解淀粉芽胞杆菌活菌数量及产碱性蛋白酶的影响[J].生物工程学报, 38(4): 1506-1518. (Xu X J, Zhu B Y, Li X Y, et al.2022. Effects of deleting peptidoglycan hydrolase genes on the viable cell counts of Bacillus amyloliquefaciens and the yield of alkaline protease[J]. Chinese Journal of Biotechnology, 38(4): 1506-1518.) [11] 于振良, 刘淑艳, 陶延怀, 等. 2014. “解淀粉芽孢杆菌Ba168”对温室番茄生长的影响[J]. 北方园艺, (19): 44-46. (Yu Z L, Liu S Y, Tao Y H, et al. 2014. Effect of Bacillus amyloliquefaciens Ba168 on tomato growth in greenhouse[J]. Northern horticulture, (19): 44-46.) [12] Chakraborty K, Thilakan B, Raola V K.2018. Previously undescribed antibacterial polyketides from heterotrophic Bacillus amyloliquefaciens associated with seaweed padina gymnospora[J]. Applied Biochemistry and Biotechnology, 184(2): 716-732. [13] Chen K, Tian Z, Luo Y, et al.2018. Antagonistic activity and the mechanism of Bacillus amyloliquefaciens DH-4 against citrus green mold[J]. Phytopathology, 108(11): 1253-1262. [14] Chowdhury N, Hazarika D J, Goswami G, et al.2022.Acid tolerant bacterium Bacillus amyloliquefaciens MBNC retains biocontrol efficiency against fungal phytopathogens in low pH[J]. Archives of Microbiology, 204(124): 1-29 [15] Ding L, Guo W, Chen X.2019. Exogenous addition of alkanoic acids enhanced production of antifungal lipopeptides in Bacillus amyloliquefaciens Pc3[J]. Applied Microbiology and Biotechnology, 103(13): 5367-5377. [16] Etchegaray A, François C, Gabrielle C, et al.2017. Production of Bacillus amyloliquefaciens OG and its metabolites in ren[J]. Canadian Journal of Microbiology, 36(3): 46-60. [17] Gamez R M, Rodríguez F, Vidal N M.et al.2019. Banana (Musa acuminata) transcriptome profiling in response to rhizobacteria: Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006[J]. BMC Genomics, 378(20): 1-20. [18] Gao T, Wang X, Qin Y.et al.2023. Watermelon root exudates enhance root colonization of Bacillus amyloliquefaciens TR2[J]. Current Microbiology, 110(80): 1-12. [19] Jamal Q, Cho J Y, Moon J H, et al.2017. Identification for the first time of Cyclo(d-Pro-l-Leu) produced by Bacillus amyloliquefaciens Y1 as a nematocide for control of Meloidogyne incognita[J]. Molecules, 22(11): 1-16. [20] Ji S H, Paul N C, Deng J X, et al.2013. Biocontrol activity of Bacillus amyloliquefaciens CNU114001 against fungal plant diseases[J]. Mycobiology, 41(4): 234-242. [21] Kalaigrami L, Slimane I B, Mnarihattab M, et al.2017. Protective effect of Bacillus amyloliquefaciens against infections of Citrus aurantium seedlings by Phoma tracheiphila[J]. World Journal of Microbiology & Biotechnology, 30(2): 529-538. [22] Kim M J, Radhakrishnan R, Kang S M, et al.2017. Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity[J]. Physiology and Molecular Biology of Plants, 23: 571-580 [23] Lee T, Park D, Kim K, et al.2017. Characterization of Bacillus amyloliquefaciens DA12 showing potent antifungal activity against Mycotoxigenic fusarium species[J]. Plant Pathology Journal, 33(5): 499-507. [24] Liu H, Carvalhais L C, Crawford M, et al.2017. Inner plant values: Diversity, colonization and benefits from endophytic bacteria[J]. Frontiers in Microbiology, 8: 1-17. [25] Liu Y, Štefanič P, Miao Y.et al.2022. Housekeeping gene gyrA, a potential molecular marker for Bacillus ecology study[J]. AMB Express, 33(12): 1-12 [26] Luise D, Bertocchi M, Motta V, et al.2019. Bacillus sp. probiotic supplementation diminish the Escherichia coli F4ac infection in susceptible weaned pigs by influencing the intestinal immune response, intestinal microbiota and blood metabolomics[J]. Journal of Animal Science and Biotechnology, 10(74): 1-16 [27] Poveda J, González-Andrés F.2021. Bacillus as a source of phytohormones for use in agriculture[J]. Applied Microbiology and Biotechnology, 105: 8629-8645. [28] Regmi S, Choi Y H, Choi Y S, et al.2017. Antimicrobial peptide isolated from Bacillus amyloliquefaciens K14 revitalizes its use in combinatorial drug therapy[J]. Folia Microbiology, 62(2): 127-138 [29] Shahzad R, Waqas M, Khan A L, et al.2016. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa[J]. Plant Physiology & Biochemistry, 106:236-243. [30] Wu Y, Yuan J, Raza W, et al.2014. Biocontrol traits and antagonistic potential of Bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot[J]. Journal of Microbiology and Biotechnology, 24(10):1327-1336. [31] Yan F, Ye X L, Li C H, et al.2021. Isolation, purification, gene cloning and expression of antifungal protein from Bacillus amyloliquefaciens MG-3[J]. Food Chemistry, 349: 1291-136. [32] Zhou C, Shi L, Ye B, et al.2017. pheS*, an effective host-genotype-independent counter-selectable marker for marker-free chromosome deletion in Bacillus amyloliquefaciens[J]. Applied Microbiology and Biotechnology, 101: 217-227. [33] Zhang P, Hao H, Wang L, et al.2022. Endophytes Bacillus amyloliquefaciens AW3 (CGMCC1.16683) improves the growth of Populus davidiana × Populus bolleana (PdPap) and induces its resistance to wilt disease by Fusarium oxysporum Fox68 (CFCC86068)[J]. European Journal of Plant Pathology, 162: 1-17. [34] Zhao K, Liu H, Song W, et al.2022. Combinatorial mutagenesis of Bacillus amyloliquefaciens for efficient production of protease[J]. Systems Microbiology and Biomanufacturing, 3(3): 457-468 |
|
|
|