|
|
|
| Transcriptomic Characteristics and Immune Response Analysis of Takifugu flavidus Liver Tissue to Vibrio anguillarum Infection |
| GAO Wei, HUANG Wen-Ji, SHAO Ling* |
| Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai 200433, China |
|
|
|
|
Abstract As a commercially important marine aquaculture species, Takifugu flavidus frequently challenged by Vibrio anguillarum, a major bacterial pathogen. However, the molecular pattern governing host-pathogen interactions remains poorly understood. To elucidate the molecular patterns underlying host-pathogen interactions, this study conducted transcriptome analysis of T. flavidus liver at 24 h post-infection (hpi). A total of 3 370 differentially expressed genes (DEGs) were identified comprising 1 930 upregulated and 1 440 downregulated genes. GO functional annotation indicated that these genes were significantly enriched in important biological processes such as cytokine-mediated signaling, immune response, cellular response to lipopolysaccharide, B cell proliferation, chemotaxis, iron ion transport, and apoptosis. KEGG pathway analysis further revealed significant enrichment in key immune-related pathways, including Toll-like receptor (TLR), retinoic acid-inducible gene-I-like receptor (RLR), NOD-like receptor (NLR) and mitogen-activated protein kinase (MAPK) signaling pathways. To validate the transcriptomic data, 52 DEGs from 4 immune-related pathways were analyzed via qRT-PCR, demonstrating consistent expression trends with RNA-seq results. This study systematically analyzed the liver transcriptome characteristics of the T. flavidus in response to V. anguillarum infection, providing new theoretical basis for elucidating the immune mechanism of fish against bacterial infections.
|
|
Received: 24 February 2025
|
|
|
|
Corresponding Authors:
* lingshao405@163.com
|
|
|
|
[1] 罗辉, 叶华, 肖世俊, 等. 2015. 转录组学技术在水产动物研究中的运用[J]. 水产学报, 4: 598-607. (Luo H, Ye H, Xiao S J, et al.Application of transcriptomics technology to aquatic animal research[J]. Journal of Fisheries of China, 4: 598-607.) [2] 王凤青, 孙玉增, 任利华, 等. 2018. 海水养殖中水产动物主要致病弧菌研究进展[J]. 中国渔业质量与标准, 8(2): 49-56. (Wang F Q, Sun Y Z, Ren L H, et al.2018. Research progress on the main pathogenic Vibrio affecting aquatic animals in mariculture[J]. Chinese Fishery Quality and Standards, 8(2): 49-56.) [3] 杨竹舫, 张汉秋, 匡云华. 1991. 渤海湾菊黄东方鲀Fugu flavidus生物学的初步研究[J]. 海洋通报, 10(6): 44-47. (Yang Z F, Zhang H Q, Kuang Y H, et al.1991. Studies on biology of Fugu flavidus in Bohai bay[J]. Marin Science Bulletin, 10(6): 44-47.) [4] 周建波, 孟繁星, 王日昕, 等. 2019. 大弹涂鱼TLR基因分子进化研究及其在鳗弧菌胁迫后的表达分析[J]. 中国水产科学, 6: 1049-1063. (Zhou J B, Meng F X, Wang R X, et al.2019. Molecular evolution analysis of 5 TLR genes in the great blue-spotted mudskipper (Boleophthalmus pectinirostris) and the immune response patterns after Vibrio anguillarum infection[J]. Journal of Fishery Sciences of China, 6: 1049-1063.) [5] Anders S, Pyl P T, Huber W.2015. HTSeq-A Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 31(2): 166-169. [6] Audia S, Brescia C, Dattilo V, et al.2024. The IL-23R and its genetic variants: A hitherto unforeseen bridge between the immune system and cancer development[J]. Cancers, 17(1): 55. [7] Cambier S, Gouwy M, Proost P.2023. The chemokines CXCL8 and CXCL12: Molecular and functional properties, role in disease and efforts towards pharmacological intervention[J]. Cellular & Molecular Immunology, 20: 217-251. [8] Chen S, Zhou Y, Chen Y, et al.2018. FASTP: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 34(17): i884-i890. [9] Deng H, Xu X, Hu L, et al.2019. A janus kinase from Scylla paramamosain activates JAK/STAT signaling pathway to restrain mud crab reovirus[J]. Fish & Shellfish Immunology, 90: 275-287. [10] Ehlting C, Wolf S D, Bode J G.2021. Acute-phase protein synthesis: A key feature of innate immune functions of the liver[J]. Biological Chemistry, 402(9): 1129-1145. [11] Frans I, Michiels C W, Bossier P, et al.2011. Vibrio anguillarum as a fish pathogen: Virulence factors, diagnosis and prevention[J]. Journal of Fish Diseases, 34(9): 643-661. [12] Fu Q, Hu J, Zhang P, et al.2022. CC and CXC chemokines in turbot (Scophthalmus maximus L.): Identification, evolutionary analyses, and expression profiling after Aeromonas salmonicida infection[J]. Fish & Shellfish Immunology, 127: 82-98. [13] Gitlin A D, Maltzman A, Kanno Y, et al.2024. N4BP1 coordinates ubiquitin-dependent crosstalk within the IκB kinase family to limit Toll-like receptor signaling and inflammation[J]. Immunity, 57(5): 973-986. [14] Hennig B J, Frodsham A J, Hellier S, et al.2007. Influence of IL-10RA and IL-22 polymorphisms on outcome of Hepatitis C virus infection[J]. Liver International, 27(8): 1134-1143. [15] Jin R M, Huang H Z, Zhou Y, et al.2021. Characterization of mandarin fish (Siniperca chuatsi) IL-6 and IL-6 signal transducer and the association between their SNPs and resistance to ISKNV disease[J]. Fish & Shellfish Immunology, 113: 139-147. [16] Kim D, Langmead B, Salzberg S L.2015. HISAT: A fast spliced aligner with low memory requirements[J]. Nature Methods, 12(4): 357-360. [17] Kurpe S R, Sukhovskaya I V, Borvinskaya E V, et al.2022. Physiological and biochemical characteristics of rainbow trout with severe, moderate and asymptomatic course of Vibrio anguillarum infection[J]. Animals, 12(19): 2642. [18] Li E, Li C.2014. Use of RNA-seq in aquaculture research[J]. Poultry Fisheries & Wildlife Sciences, 2(2): 476. [19] Li R, Shu M, Liu X, et al.2022. Genome-wide identification of mitogen-activated protein kinase (MAPK) gene family in yellow catfish (Pelteobagrus fulvidraco) and their expression profiling under the challenge of Aeromonas hydrophila[J]. Journal of Fish Biology, 101(3): 699-710. [20] Li Z, Wang X, Chen C, et al.2019. Transcriptome profiles in the spleen of African catfish (Clarias gariepinus) challenged with Aeromonas veronii[J]. Fish & Shellfish Immunology, 86: 858-867. [21] Lin J, Zhang T, Zhang L.2025. Arsenite-induced liver apoptosis via oxidative stress and the MAPK signaling pathway in marine medaka[J]. Aquatic Toxicology, 279: 107226. [22] Liwinski T, Zheng D, Elinav E.2020. The microbiome and cytosolic innate immune receptors[J]. Immunological Reviews, 297(1): 207-224. [23] Love M I, Huber W, Anders S.2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 15: 1-21. [24] Manchanayake T, Salleh A, Amal M N A, et al.2023. Pathology and pathogenesis of Vibrio infection in fish: A review[J]. Aquaculture Reports, 28, 101459. [25] Martínez D, Vargas-Lagos C, Oyarzún R, et al.2018. Temperature modulates the immunological response of the sub-antarctic notothenioid fish Eleginops maclovinus injected with Piscirickettsia salmonis[J]. Fish & Shellfish Immunology, 82: 492-503. [26] Meijer A H, Krens S F G, Rodriguez I A M, et al.2004. Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish[J]. Molecular Immunology, 40(11): 773-783. [27] Moens U, Kostenko S, Sveinbjørnsson B.2013. The role of mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) in inflammation[J]. Genes, 4(2): 101-133. [28] Mu Y, Ding F, Cui P, et al.2010. Transcriptome and expression profiling analysis revealed changes of multiple signaling pathways involved in immunity in the large yellow croaker during Aeromonas hydrophila infection[J]. BMC Genomics, 11: 1-14. [29] Newton K, Dixit V M, Kayagaki N.2021. Dying cells fan the flames of inflammation[J]. Science, 374, 1076-1080. [30] Qi L, Chen Y, Shi K, et al.2021. Combining of transcriptomic and proteomic data to mine immune-related genes and proteins in the liver of Cynoglossus semilaevis challenged with Vibrio anguillarum[J]. Comparative Biochemistry and Physiology Part D: Genomics & Proteomics, 39: 100864. [31] Roberts A, Trapnell C, Donaghey J, et al.2011. Improving RNA-Seq expression estimates by correcting for fragment bias[J]. Genome Biology, 12: 1-14. [32] Rose-John S, Jenkins B J, Garbers C, et al.2023. Targeting IL-6 trans-signalling: Past, present and future prospects[J]. Nature Reviews Immunology, 23: 666-681. [33] Sanches-Fernandes G M M, Sá-Correia I, Costa R.2022. Vibriosis outbreaks in aquaculture: Addressing environmental and public health concerns and preventive therapies using gilthead seabream farming as a model system[J]. Frontiers in Microbiology, 13: 904815. [34] Sahraeian S M E, Mohiyuddin M, Sebra R.et al.2017. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis[J]. Nature Communications, 8: 59. [35] Schmittgen T D, Livak K J.2008. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols, 3(6): 1101-1108. [36] Shen Y, Ma K, Liu F, et al.2016. Characterization of two novel gadd45a genes in hybrid tilapia and their responses to the infection of Streptococcus agalactiae[J]. Fish & Shellfish Immunology, 54: 276-281. [37] Shi Y H, Zhang G Y, Zhu Y Z, et al.2010. Effects of temperature on fertilized eggs and larvae of tawny puffer Takifugu flavidus[J]. Aquaculture Research, 41(12): 1741-1747. [38] Tamura R E, de Vasconcellos J F, Sarkar D, et al.2012. GADD45 proteins: Central players in tumorigenesis[J]. Current Molecular Medicine, 12(5), 634-651. [39] Tian Y, Wen H, Qi X, et al.2019. Identification of mapk gene family in Lateolabrax maculatus and their expression profiles in response to hypoxia and salinity challenges[J]. Gene, 684, 20-29. [40] Zhu J, Li C, Ao Q, et al.2015. Trancriptomic profiling revealed the signatures of acute immune response in tilapia (Oreochromis niloticus) following Streptococcus iniae challenge[J]. Fish & Shellfish Immunology, 46(2): 346-353. |
| [1] |
WANG Zhe, WU Rong-Feng, GENG Qing-Qing, ZHAO Zi-Duo, WU Yi-Fan, CHENG Fu-Fu, XI Yi-Fan, CHEN Xin-Yu, WANG Chun-Hui-Zi, Niu Ying-Jie, ZUO Qi-Sheng, ZHANG Ya-Ni. Functional Studies on the Involvement of Fatty Acid Oxidation in the Formation of Chicken (Gallus gallus domesticus) Primordial Germ Cells[J]. 农业生物技术学报, 2025, 33(2): 355-365. |
|
|
|
|