|
|
|
| Transcriptome Analysis Reveals Aroma Metabolic Network of 'Qingxiang' Walnut (Juglans regia) |
| WANG Xue-Ting1, LIANG Man-Man1, LI Han2, QI Guo-Hui2, SHEN Yan-Hong1,* |
1 College of Horticultural Science & Technology/Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066000, China; 2 College of Forestry, Hebei Agricultural University, Baoding 071000, China |
|
|
|
|
Abstract Walnut (Juglans regia) is highly valued by consumers for its distinctive aroma, yet the molecular mechanisms underlying its aroma formation remain unclear. In this study, fresh 'Qingxiang' walnut kernels were analyzed using headspace solid-phase microextraction (HS-SPME)-gas chromatography-mass spectrometry (GC-MS) and transcriptome sequencing (RNA-seq) to systematically investigate the dynamic changes in aroma-related genes and volatile compounds during kernel development from 85 to 141 d after flowering. GC-MS analysis identified 70 volatile organic compounds (VOCs), with aldehydes (e.g., nonanal), alcohols (e.g., 1-octen-3-ol), and ketones (e.g., 3-octanone) as key aroma contributors. Based on odor activity value (OAV>1), 11 core aroma-active compounds were screened, including (E)-2-butenal and hexanal. Transcriptome analysis revealed that differentially expressed genes (DEGs) during fruit maturation were significantly enriched in starch and sucrose metabolism (94), pyruvate metabolism (66), fatty acid biosynthesis (39), terpenoid backbone biosynthesis (35), α-linolenic acid metabolism (36), and fatty acid degradation (29). Further integration of omics data and aroma dynamics enabled the construction of a regulatory network for aldehyde and ketone biosynthesis, It was found that hydroperoxide lyase (HPL) coding gene JrHPL, alcohol dehydrogenase (ADH) coding genes JrADH_7 and JrADH_8, and aldehyde dehydrogenase (ALDH) coding gene JrALDH_7 play key roles in aroma metabolism. This study reveals the multi-omics regulatory mechanism of walnut aroma formation, offering a theoretical reference for molecular breeding strategies to enhance nut flavor.
|
|
Received: 07 May 2025
|
|
|
|
Corresponding Authors:
*papayacrazy@aliyun.com
|
|
|
|
[1] 胡玉霞, 王方, 王昭君, 等. 2011.顶空固相微萃取与气质联用分析山核桃香气成分[J].农业机械, (20): 135-138. (Hu Y X Wang F, Wang Z J, et al. 2011. Spectrometry analysis of aroma components in walnuts[J]. Agricultural Machinery, (20): 135-138.) [2] 刘艳, 陶亮, 顾凡, 等. 2024. 大理漾泡、紫皮核桃仁营养成分及风味物质的比较分析[J]. 食品工业科技, 45(10): 308-315. ( Liu Y, Tao L, Gu F, et al.2024. Comparative analysis of nutritional components and flavor substances of Dali Yangpao and purple walnut kernels[J]. Science and Technology of Food Industry, 45(10): 308-315.) [3] 石天磊, 李晓颍, 左波, 等. 2020. 8份核桃资源坚果主要香气物质分析[J]. 果树学报, 37(7): 1016-1024. (Shi T L, Li X X, Zuo B, et al.2020. Analysis of main aroma compounds in 8 walnut resources[J]. Journal of Fruit Science, 37(7): 1016-1024.) [4] 孙群, 胡景江. 2006. 植物生理学研究技术[M]. 西北农林科技大学出版社, 咸阳, pp. 83-84. (Sun Q, Hu J J.2006. Plant Physiology Research Technology[M]. Northwest A&F University Press.., Xianyang, pp. 83-84.) [5] 温思为, 张黄伟, 岳超, 等. 2021. 10种蔷薇科果树AAT基因家族鉴定、特性与表达分析[J]. 果树学报, 38(7): 1029-1043. (Wen S W, Zhang H W, Yue C, et al.2021. Identification, characterization and expression analysis of AAT gene family in 10 Rosaceae fruit trees[J]. Journal of Fruit Science, 38(7): 1029-1043.) [6] 肖腾香, 冯花, 罗玉琴, 等. 2025. 柚香白茶关键风味物质及品质分析[J]. 食品工业科技, 46(18): 47-55. (Xiao T X, Feng H, Luo Y Q, et al.2025. Analysis of key flavor substances and quality of grapefruit-flavored white tea[J]. Food Industry Science and Technology, 46(18): 47-55.) [7] 徐新娟, 黄中文, 王伟, 等. 2016. 全自动凯氏定氮仪测定大豆蛋白质方法的研究[J]. 黑龙江农业科学,(2): 108-110, 121. (Xu X J, Huang Z W, Wang W, et al.2016. Study on the method of determining soybean protein by fully automatic Kjeldahl nitrogen analyzer[J]. Heilongjiang Agricultural Science (2): 108-110, 121.) [8] 张亭, 杜倩, 李勇. 2018. 核桃的营养成分及其保健功能的研究进展[J]. 中国食物与营养, 24(7): 64-69. (Zhang T, Du Q, Li Y.2018. Research progress on nutritional components and health functions of walnuts[J]. Chinese Food and Nutrition, 24(7): 64-69.) [9] 周虹余, 王瑗媛, 李法鑫, 等. 2025. 基于GC-O-MS评价芽叶型黄茶的香气类型及其关键香气组分的呈香贡献[J]. 茶叶科学, 44(6): 985-1004. (Zhou H Y, Wang Y Y, Li F X, et al.2025. Evaluation of aroma types and aroma contribution of key aroma components of bud-leaf yellow tea based on GC-O-MS[J]. Tea Science, 44(6): 985-1004.) [10] Aryal S, Baniya M K, Danekhu K, et al.2019. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western nepal[J]. Plants, 8(4): 96. [11] Espino-Díaz M, Sepúlveda D R, González-Aguilar G A, et al.2016. Biochemistry of apple aroma: A review[J]. Food Technology and Biotechnology, 54(4): 375-390. [12] El Hadi M A M, Zhang F J, Wu F F, et al.2013. Advances in fruit aroma volatile research[J]. Molecules, 18(7): 8200-8229. [13] Elmore J S, Nisyrios I, Mottram D S.2005. Analysis of the headspace aroma compounds of walnuts (Juglans regia L.)[J]. Flavour and Fragrance Journal, 20(5): 501-506. [14] van Gemert L J.2003. Compilation of Odour Threshold Values in Air, Water and Other Media[M]. Oliemans Punter & Partners BV, Zeist. pp. 1-261. [15] Goff S A, Klee H J.2006. Plant volatile compounds: Sensory cues for health and nutritional value?[J]. Science, 311(5762): 815-819. [16] Hornostaj A R, Robinson D S.1999. Purification of hydroperoxide lyase from cucumbers[J]. Food Chemistry, 66(2): 173-180. [17] Li X, Qi L, Zang N, et al.2022. Integrated metabolome and transcriptome analysis of the regulatory network of volatile ester formation during fruit ripening in pear[J]. Plant Physiology and Biochemistry, 185: 80-90. [18] Manríquez D, El-Sharkawy I, Flores F B, et al.2006. Two highly divergent alcohol dehydrogenases of melon exhibit fruit ripening-specific expression and distinct biochemical characteristics[J]. Plant Molecular Biology, 61(4): 675-685. [19] Muchlinski A, Ibdah M, Ellison S, et al.2020. Diversity and function of terpene synthases in the production of carrot aroma and flavor compounds[J]. Scientific Reports, 10(1): 9989. [20] Oh S H, Lim B S, Hong S J, et al.2011. Aroma volatile changes of netted muskmelon (Cucumis melo L.) fruit during developmental stages[J]. Horticulture, Environment, and Biotechnology, 52(6): 590-595. [21] Ono E, Handa T, Koeduka T, et al.2016. CYP74B24 is the 13-hydroperoxide lyase involved in biosynthesis of green leaf volatiles in tea (Camellia sinensis)[J]. Plant Physiology and Biochemistry, 98: 112-118. [22] Qian X, Xu X Q, Yu K J, et al.2016. Varietal dependence of GLVs accumulation and LOX-HPL pathway gene expression in four Vitis vinifera wine grapes[J]. International Journal of Molecular Sciences, 17(11): 1924. [23] Saha M, Makhija R, Asati V.2025. Chapter 8 - Solvent free extraction procedures[M]. Locatelli M, Kaya S. Green Analytical Chemistry. Elsevier: pp. 247-261. [24] Spaho N, Gaši F, Leitner E, et al.2021. Characterization of Volatile compounds and flavor in spirits of old apple and pear cultivars from the balkan region[J]. Foods, 10(6): 1258. [25] Speirs J, Lee E, Holt K, et al.1998. Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols1[J]. Plant Physiology, 117(3): 1047-1058. [26] Sun Q, Zhang N, Wang J, et al.2015. Melatonin promotes ripening and improves quality of tomato fruit during postharvest life[J]. Journal of Experimental Botany, 66(3): 657-668. [27] Ueda Y, Zhao W, Ihara H, et al.2022. Functional characteristics of aldehyde dehydrogenase and its involvement in aromatic volatile biosynthesis in postharvest banana ripening[J]. Foods, 11(3): 347. [28] Umer M J, Bin Safdar L, Gebremeskel H, et al.2020. Identification of key gene networks controlling organic acid and sugar metabolism during watermelon fruit development by integrating metabolic phenotypes and gene expression profiles[J]. Horticulture Research, 7: 193. [29] Wei J, Wu C Y, Jiang Y, et al.2014. Sample preparation optimization for determination of soluble sugar in red jujube fruits by anthrone method[J]. Food Science, 35(24): 136. [30] Xi B N, Zhang J J, Xu X, et al.2024. Characterization and metabolism pathway of volatile compounds in walnut oil obtained from various ripening stages via HS-GC-IMS and HS-SPME-GC-MS[J]. Food Chemistry, 435: 137547. [31] Xi W, Zheng H, Zhang Q, et al.2016. Profiling taste and aroma compound metabolism during apricot fruit development and ripening[J]. International Journal of Molecular Sciences, 17(7): 998. [32] Zhou Y, Fan W, Chu F, et al.2018. Identification of volatile oxidation compounds as potential markers of walnut oil quality[J]. Journal of Food Science, 83(11): 2745-2752. |
|
|
|