|
|
|
| Dwarfing Effect and Mechanism Analysis of Uniconazole on the Epicotyl of Tomato (Solanum lycopersicum) Seedlings |
| LI Jin-Zhe1, LIU Si-Chao2, WANG Jun-Qi1, MAO Xiu-Jie1, ZHANG Ning1,3,4,* |
1 College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; 2 Chengde Vegetable Technology Promotion Station, Chengde 067000, China; 3 Key Laboratory of Characteristic Horticultural Germplasm Exploration and Innovative Utilization in Hebei Province, Qinhuangdao 066004, China; 4 Hebei Province University Characteristic Horticultural Plant Biological Breeding Application Technology Research and Development Center, Qinhuangdao 066004, China |
|
|
|
|
Abstract The high temperature and small temperature difference between day and night in horticultural facilities are easy to occur in summer, which causes tomato (Solanum lycopersicum) seedlings to overgrow, especially the epicotyl, resulting in lower yields and economic losses. As an inhibitor of gibberellin synthesis, uniconazole can delay cell elongation and inhibit the seedling to overgrow. In order to clarify the effect of uniconazole on epicotyl dwarfing in tomato, 0, 15, 45 and 75 mg/L uniconazole solutions were sprayed on long internode 'DH' tomato seedlings, and the morphological indexes of tomato seedlings were measured at 7 d intervals after spraying, such as epicotyl length, epicotyl thickness, plant height, leaf width and leaf length, and measured the quality indicators of tomato fruits after planting. The results showed that 45 mg/L of uniconazole significantly reduced epicotyl length and plant height in tomato seedlings, and significantly increased soluble protein and soluble solids contents in tomato fruits. The expression of genes in the gibberellic acid (GA) and indole-3-acetic acid (IAA) regulatory pathway in the tomato epicotyl at 7 d after uniconazole treatment were analyzed. The results showed that the majority of genes in the GA regulatory pathway genes showed up-regulated expression patterns. Auxin response factor 13 (SlARF13) gene in the IAA regulatory pathway also showed up-regulated expression patterns, whereas SlIAA33 gene showed down-regulated expression patterns. Therefore, GA2ox3 and GA2-β-dioxygenase8 gene in the GA pathway and the SlARF13 and SlIAA33 genes could be used as candidate genes for tomato epicotyl dwarfing. This study provides a theoretical basis for the subsequent application of uniconazole in tomato seedling.
|
|
Received: 14 April 2025
|
|
|
|
Corresponding Authors:
*zhangning9097@163.com
|
|
|
|
[1] 丁凯鑫, 王立春, 田国奎, 等. 2023. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 39(06): 1-11. (Ding K X, Wang L C, Tian G K, et al.2023. Research progress in uniconazole alleviating plant drought damage[J]. Biotechnology Bulletin, 39(06): 1-11.) [2] 黄海, 唐常青, 方金豹. 1994. 烯效唑与多效唑的药效比较[J]. 果树科学, (04): 233-236. (Huang H, Tang C Q, Fang J B. 1994. Comparison of the inhibitory effect between uniconazole and paclobutrazol[J]. Journal of Fruit Science, (04): 233-236.) [3] 李锡香, 杜永臣. 2017. 番茄种质资源描述规范和数据标准[M]. 北京:中国农业科学出版社. (Li X X, Du Y C.2017. Description Specification and Data Standard for Tomato Germplasm Resources[M]. China Agriculture Press (in Chinese), Beijing, China.) (in Chinese), Beijing, China.) [4] 刘文超, 李丹, 白冰, 等. 2022. 多效唑对番茄上胚轴矮化的影响[J].植物生理学报, 58(11): 2151-2162. (Liu W C, Li D, Bai B, et al.2022. Effects of paclobutrazole on epicotyl dwarfing in tomato[J]. Plant Physiology Journal, 2022, 58(11): 2151-2162.) [5] 孟娜, 徐航, 魏明, 等. 2017. 叶面喷施烯效唑对盐胁迫下大豆幼苗生理及解剖结构的影响[J]. 西北植物学报, 37(10): 1988-1995. (Meng N, Xu H, Wei M, et al.2017. Effect of foliar uniconazole spraying under salt stress on physiological and anatomical characteristics in Glycine max[J]. Acta Botanica Boreali-Occidentalia Sinica, 37(10): 1988-1995.) [6] 齐德强, 赵晶晶, 冯乃杰, 等. 2019. 烯效唑(S3307)和胺鲜酯(DTA-6)对马铃薯叶与块茎糖代谢及产量的影响[J]. 作物杂志, (04): 148-153. (Qi D Q, Zhao J J, Feng N J, et al. 2019. Effects of S3307 and DTA-6 on sugar metabolism and yield of potato leaves and tubers[J]. Crops, (04): 148-153.) [7] 任若飞, 赵强, 王自然, 等. 2024. 滴施烯效唑复配促进剂对棉花生长发育及产量、品质的影响[J]. 河南农业科学, 53(03): 68-77. (Ren R F, Zhao Q, Wang Z R, et al.2024. Effect of drip application of uniconazole compound promoter on the growth, development, yield and quality of cotton[J]. Journal of Henan Agricultural Sciences, 53(03): 68-77.) [8] 石建斌. 2016. 马铃薯赤霉素合成代谢途径关键酶基因GA2ox1、GA20ox1的克隆与功能分析[D]. 博士学位论文, 青海大学, 导师: 王舰, pp. 109-112. (Shi J B.The cloning and function analysis of key enzyme gene GA2ox1, GA20ox1 in gibberellin biosynthetic pathway of potato(Solanum tuberosum)[D]. Thesis for Ph.D., Qinghai University, Supervisor: Wang J, pp. 109-112.) [9] 王学芳, 张忠鑫, 郑磊, 等. 2021. 多效唑、烯效唑对油菜'秦优1618'苗期特性和抗寒性的影响[J]. 中国农学通报, 37(36): 36-40. (Wang X F, Zhang Z X, Zheng L, et al.2021. Effects of paclobutrazol and uniconazole on seedling characteristics and cold resistance of rapeseed 'Qin You 1618'[J]. Chinese Agricultural Science Bulletin, 37(36): 36-40.) [10] 杨春艳. 2013. 设施蔬菜的徒长及其防治[J]. 中国蔬菜, (03):59-60. (Yang C Y. 2013. Overgrowth of vegetable in facility and its prevention[J]. China Vegetables, (03): 59-60.) [11] 杨晴, 郭守华. 2010. 植物生理生化实验[M]. 北京:中国农业科学技术出版社, pp. 86-88. (Yang Q, Guo S H.2010. Plant Physiological and Biochemical Experiments[M]. China Agricultural Science Technology Press, Beijing, China, pp. 86-88.) [12] 张锦强, 张坤, 豆鑫, 等. 2020. 烯效唑对'夏黑'葡萄生理特性及品质的影响[J]. 西北林学院学报, 35(06): 135-141. (Zhang J Q, Zhang K, Dou X, et al.2020. Effect of application of uniconazole on physiological characteristics and quality of 'Summer Black' grape[J]. Journal of Northwest Forestry University, 35(06): 135-141.) [13] 张巫军, 段秀建, 李茂瑜, 等. 2024. 弱光下烯效唑对杂交籼稻茎秆形态、解剖特征和抗倒伏性的影响[J]. 中国农业科学, 57(15): 2946-2963. (Zhang W J, Duan X J, Li M Y, et al.2024. Effects of foliar application uniconazole on culm morphological characters, anatomical traits and stem lodging resistance of hybrid indica rice under low light stress[J]. Chinese Agricultural Sciences, 57(15): 2946-2963.) [14] 张泽锦, 王力明, 梁颖, 等. 2022. 喷施矮壮素和烯效唑对四川盆地设施线椒生长和产量的影响[J]. 四川农业科技,(07): 31-33+36. (Zhang Z J, Wang L M, Liang Y, et al.2022. Effects of spraying chlormequat chloride and uniconazole on the growth and yield of wire peppers in Sichuan Basin facilities[J]. Sichuan Agricultural Science and Technology,(07): 31-33+36.) [15] Ara N, Bashar M K, Begum S, et al.2007. Effect of spacing and stem pruning on the growth and yield of tomato[J]. International Journal of Sustainable Crop Production, 2(3):35-39. [16] Butcher D N, Street H E.1960. The effects of gibberellins on the growth of excised tomato roots[J]. Journal of Experimental Botany, 11(2): 206-216. [17] Candian J S, Martins B N M, Cardoso A I I, et al.2017. Stem conduction systems effect on the production and quality of mini tomato under organic management[J]. Bragantia, 76(2): 238-245. [18] Griffiths J, Murase K, Rieu I, et al.2006. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J]. Plant Cell, 18: 3399-3414. [19] Hauvermale A L, Ariizumi T, Steber C M.2014. The roles of the GA receptors GID1a, GID1b, and GID1c in sly1-independent GA signaling[J]. Plant Signaling Behavior, 9(02): 2125-2139. [20] Hauvermale A L, Cárdenas J J, Bednarek S Y, et al.2022. GA signaling expands: The plant UBX domain-containing protein 1 is a binding partner for the GA receptor[J]. Plant Physiology, 190(04): 2651-2670. [21] Hedden P, Phillips A L.2000. Gibberellin metabolism: New insights revealed by the genes[J]. Trends in Plant Science, 5(12): 523-530. [22] Hedden P, Proebsting W M.1999. Genetic analysis of gibberellin biosynthesis[J]. Plant Physiology, 119: 365-370. [23] Jost M, Taketa S, Mascher M, et al.2016. A homolog of Blade-On-Petiole 1 and 2 (BOP1/2) controls internode length and homeotic changes of the barley inflorescence[J]. Plant Physiology, 171(02): 1113-1127. [24] Li H, Cui G, Li G, et al.2024. Assessing the efficacy and residual impact of plant growth retardants on crop lodging and overgrowth: A review[J]. European Journal of Agronomy, 159: 127276. [25] Liscum E, Reed J W.2002. Genetics of Aux/IAA and ARF action in plant growth and development[J]. Plant Molecular Biology, 49: 387-400. [26] Ogugua U V, Kanu S A, Ntushelo K.2022. Gibberellic acid improves growth and reduces heavy metal accumulation: A case study in tomato (Solanum lycopersicum L.) seedlings exposed to acid mine water[J]. Heliyon, 8(12). e12399. [27] Olszewski N, Sun T, Gubler F.2002. Gibberellin signaling: Biosynthesis, catabolism, and response pathways[J]. Plant Cell, 14: S61-S80. [28] Sun L, Yang W, Li Y, et al.2019. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line[J]. Plant Journal, 97(5): 887-900. [29] Su T, Liu H, Wu Y, et al.2024. Soybean hypocotyl elongation is regulated by a MYB33‐SWEET11/21‐GA2ox8c module involving long‐distance sucrose transport[J]. Plant Biotechnology Journal, 22(10): 2859-2872. [30] Tiwari S B, Wang X J, Hagen G, et al.2001. AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin[J]. Plant Cell, 13(12): 2809-2822. [31] Wang H, Jones B, Li Z, et al.2005. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis[J]. Plant Cell, 17(10): 2676-2692. [32] Zhou H, Zheng D, Feng N, et al.2022. Effects of uniconazole on leaves photosynthesis, root distribution and yield of mung bean (Vigna radiata)[J]. Journal of Plant Growth Regulation, 41(7): 2629-2637. |
|
|
|