|
|
Research Progress and Application of Genetic Transformation Technology by Pollen-tube Pathway |
GE Bao-Zhi1,2, SONG Jie1, PENG Lv-Chun1, LI Wei3, GUAN Wen-Ling2,*, ZHANG Lu1,* |
1 Flower Research Institute/National Engineering Research Center for Ornamental Horticulture/Key Laboratory of Flower Breeding of Yunnan province, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; 2 School of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; 3 Yunnan Jicheng Landscape Technology Co., Ltd., Honghe 652339, China |
|
|
Abstract The genetic transformation technology of pollen-tube pathway, as a commonly used method for genetic transformation, offers advantages such as simplicity of operation, independence from genotype, and the ability to directly obtain transgenic seeds. Despite being influenced by factors such as external environmental conditions, the natural flowering period of plants, and limited flowering frequency, the pollen tube pathway genetic transformation technique remains highly applicable to a wide range of plants, especially those that are genotype-dependent. This article reviewed the origin, classification, and characteristics of this method, discussed the main factors affecting its genetic transformation efficiency and the progress in understanding its transformation mechanisms, and compareed it with the Agrobacterium-mediated genetic transformation method. Finally, the current applications, existing issues, and future prospects of the pollen tube pathway method were elaborated, providing theoretical references for establishing or optimizing a rapid and highly efficient plant genetic transformation technique via the pollen tube pathway.
|
Received: 13 March 2025
|
|
Corresponding Authors:
*changjiangyulu@163.com; 158066692@qq.com
|
|
|
|
[1] 毕瑞明, 陈立国, 后猛, 等. 2006. 小麦的遗传转化[J]. 植物生理学通讯, 42(03): 573-579. (Bi R M, Chen L G, Hou M, et al.2006. Genetic transformation of Triticum aestivum[J]. Plant Physiology Communication, 42(03): 573-579.) [2] 邸宏, 周羽, 梁广东, 等. 2012. 玉米三种不同花粉管通道法转化BcBCP1基因的初报[J]. 作物杂志, 28(02): 51-54. (Di H, Zhou Y, Liang G D, et al.2012. Preliminary report on the transformation of Zea mays with BcBCP1 gene using three different pollen-tube pathway methods[J]. Crop Magazine, 28(02): 51-54.) [3] 杜周和, 严旭, 左艳春, 等. 2020. 花粉管通道转高丹草总DNA创制饲草玉米新种质[J]. 江苏农业科学, 48(12): 141-144. (Du Z H, Yan X, Zuo Y C, et al.2020. Creation of new forage Zea mays germplasm by introducing Sorghum bicolor sudanense total DNA via pollen-tube pathway method[J]. Jiangsu Agricultural Sciences, 48(12): 141-144.) [4] 冯连荣, 王占斌, 尹杰, 等. 2016. 花粉管通道法介导山葡萄VaCBF3基因转化杨树的初步研究[J]. 湖南农业大学学报(自然科学版), 42(05): 500-504. (Feng L R, Wang Z B, Yin J, et al.2016. Preliminary study on the transformation of Populus with VaCBF3 gene from Vitis amurensis mediated by pollen-tube pathway method[J]. Journal of Hunan Agricultural University (Natural Sciences), 42(05): 500-504.) [5] 冯莎莎, 杜国强, 师校欣, 等. 2007. DNA浓度及注射时间对苹果花粉管通道法基因转化率的影响[J]. 中国农学通报, 23(04): 64-66. (Feng S S, Du G Q, Shi X X, et al.2007. Effects of DNA concentration and injection time on the transformation efficiency of Malus pumila via pollen-tube pathway method[J]. Chinese Agricultural Science Bulletin, 23(04): 64-66.) [6] 郭海军, 刘立岩, 窦月, 等. 2010. 花粉管导入的研究进展[J]. 安徽农学通报(上半月刊), 16(05): 74-75+100. (Guo H J, Liu L Y, Dou Y, et al. 2010. Research progress on pollen-tube pathway method[J]. Anhui Agricultural Science Bulletin, 16(05): 74-75+100.) [7] 郭向萌. 2017. 辣椒总DNA花粉管通道法遗传转化小麦的T1代IRAP分析[J]. 分子植物育种, 15(07): 2711-2715. (Guo X M.2017. IRAP analysis of T1 generation in Triticum aestivum transformed with Capsicum annuum total DNA via pollen-tube pathway method[J]. Molecular Plant Breeding, 15(07): 2711-2715.) [8] 霍宏亮, 张日清, 马庆华, 等. 2014. 川榛柱头可授性及花粉管生长特性的研究[J]. 林业科学研究, 27(03): 403-409. (Huo H L, Zhang R Q, Ma Q H, et al.2014. Stigma receptivity and characteristics of pollen tube growth of Corylus kweichowensis[J]. Forest Research, 27(03): 403-409.) [9] 贾士荣. 2001. 转基因棉花[M]. 科学出版社, 北京. pp. 1-11. (Jia S R.2001. Genetically Modified Cotton[M]. Science Press, Beijing. pp. 1-11.) [10] 蒋玉蓉, 袁俊杰, 陈国林, 等. 2015. 转甜菜碱醛脱氢酶(BADH)基因棉花的获得及其耐盐性鉴定[J]. 分子植物育种, 13(01): 125-131. (Jiang Y R, Yuan J J, Chen G L, et al.2015. Acquisition and salt tolerance identification of Gossypium arboreum transformed with betaine aldehyde dehydrogenase (BADH) gene[J]. Molecular Plant Breeding, 13(01): 125-131.) [11] 焦苏淇, 周俊名, 尚雨晴, 等. 2022. 大豆脂肪酸脱氢酶GmFAD3C-1基因的克隆及功能分析[J]. 中国油料作物学报, 44(05): 1006-1017. (Jiao S Q, Zhou J M, Shang Y Q, et al.2022. Cloning and functional analysis of the fatty acid desaturase gene GmFAD3C-1 in Glycine max[J]. Chinese Journal of Oil Crops, 44(05): 1006-1017.) [12] 孔青, 丰震, 刘林, 等. 2005. 外源DNA导入花粉管通道技术的发展和应用[J]. 分子植物育种, 03(01): 113-116. (Kong Q, Feng Z, Liu L, et al.2005. Application and development of foreign DNA introduction via the pollen-tube pathway[J]. Molecular Plant Breeding, 03(01): 113-116.) [13] 李广信, 王广元, 于晓慧, 等. 2021. 高粱DNA导入水稻后代主要性状分析[J]. 分子植物育种, 19(09): 3046-3052. (Li G X, Wang G Y, Yu X H, et al.2021. Analysis of major traits in progeny of Oryza sativa transformed with Sorghum bicolor DNA[J]. Molecular Plant Breeding, 19(09): 3046-3052.) [14] 李卉, 武天龙. 2007. CaCl2诱导大豆花粉管通道农杆菌转基因研究[J]. 大豆科学, 26(01): 55-59. (Li H, Wu T L.2007. Research on agrobacterium-mediated genetic transformation of Glycine max pollen-tube pathway induced by CaCl2[J]. Soybean Science, 26(01): 55-59.) [15] 李茫雪, 张赫然, 于晶, 等. 2010. 花粉管通道法将Bt-CPTI双价抗虫基因转入玉米自交系的研究[J]. 玉米科学, 18(01): 29-33+41. (Li M X, Zhang H R, Yu J, et al. 2010. Research on the introduction of Bt-CPTI dual insect-resistant genes into Zea mays inbred lines via pollen-tube pathway method[J]. Journal of Maize Sciences, 18(01): 29-33+41.) [16] 李向龙, 张中保, 张春, 等. 2022. 聚乙二醇和细胞穿膜肽介导提高玉米花粉管通道法转化效率[J]. 江苏农业科学, 50(12): 91-94. (Li X L, Zhang Z B, Zhang C, et al.2022. Enhancement of transformation efficiency in Zea mays via pollen-tube pathway mediated by polyethylene glycol and cell-penetrating peptides[J]. Jiangsu Agricultural Sciences, 50(12): 91-94.) [17] 李向龙, 郑登俞, 张春, 等. 2023. 花粉管通道法转EPSPS基因创制耐草甘膦玉米种质[J]. 福建农业学报, 38(05): 524-529. (Li X L, Zheng D Y, Zhang C, et al.2023. Creation of glyphosate-tolerant Zea mays germplasm by pollen-tube pathway mediated transformation with EPSPS gene[J]. Fujian Journal of Agricultural Sciences, 38(05):524-529.) [18] 李懿鑫, 果弘毅, 储歆彤, 等. 2022. 园林植物再生与遗传转 [19] 化体系研究进展[J]. 江苏农业科学, 50(14): 12-21. (Li Y X, Guo H Y, Chu X T, et al.2022. Research progress on regeneration and genetic transformation systems in ornamental plants[J]. Jiangsu Agricultural Sciences, 50(14): 12-21.) [20] 李云富, 江敏, 宁慧宇, 等. 2018. ZmLTP3基因对玉米的遗传转化及耐盐性鉴定[J]. 华北农学报, 33(03): 1-6. (Li Y F, Jiang M, Ning H Y, et al.2018. Genetic transformation of Zea mays with ZmLTP3 gene and identification of salt tolerance[J]. Acta Agriculturae Boreali-Sinica, 33(03): 1-6.) [21] 林立金, 张潇, 韩娟, 等. 2016. 温度对枇杷头花花粉管生长及保护酶活性的影响[J]. 西北植物学报, 36(12): 2454-2460. (Lin L J, Zhang X, Han J, et al.2016. Effects of temperature on pollen tube growth and protective enzyme activities in the first flower of Eriobotrya japonica[J]. Acta Botanica Boreali-Occidentalia Sinica, 36(12): 2454-2460.) [22] 刘晶慧. 2023. 植物基因编辑相关的遗传转化方法研究[D]. 硕士学位论文, 中国农业科学院, 导师: 闫晓红. pp. 50-94. (Liu J H.2023. Research on genetic transformation methods related to plant gene editing[D]. Thesis for M.S., Chinese Academy of Agricultural Sciences, Supervisor: Yan X H. pp. 50-94.) [23] 刘文欣. 2022. 农杆菌介导单子叶植物遗传转化研究进展[J]. 种业导刊, (06): 11-16. (Liu W X. 2022. Agrobacterium-mediated genetic transformation of monocot plants [J]. Seed Industry Guide, (06): 11-16.) [24] 马盾, 周小云, 黄乐平. 2008. 花粉管通道法转基因棉花后代的遗传特性[J]. 西北农业学报, 17(03): 147-149. (Ma D, Zhou X Y, Huang L P.2008. Genetic characteristics of progeny from transgenic Gossypium arboreum via pollen-tube pathway method[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 17(03): 147-149.) [25] 孟宪玉, 单长建, 王乾坤, 等. 2014. 玉米花粉管通道法转化脱水素BDN1基因[J]. 玉米科学, 22(06): 32-35. (Meng X Y, Shan C J, Wang Q K, et al.2014. Transformation of Zea mays with dehydrin BDN1 gene via pollen-tube pathway method[J]. Journal of Maize Sciences, 22(06): 32-35.) [26] 穆金虎, 陈玉泽, 冯慧, 等. 2016. 作物育种学领域新的革命:高通量的表型组学时代[J]. 植物科学学报, 34(06): 962-971. (Mu J H, Chen Y Z, Feng H, et al.2016. A new revolution in crop breeding: The era of high-throughput phenomics[J]. Journal of Plant Science, 34(06): 962-971.) [27] 倪迪安, 梁锦, 高马也, 等. 2020. 萱草乙二醛酶基因的克隆及花粉管通道法遗传转化[J]. 植物生理学报, 56(02): 171-179. (Ni D A, Liang J, Gao M Y, et al.2020. Cloning of glyoxalase gene in Hemerocallis fulva and its genetic transformation via pollen-tube pathway method[J]. Plant Physiology Journal, 56(02): 171-179.) [28] 欧巧明, 崔文娟, 王炜, 等. 2013. 花粉管通道法导入高粱DNA创造优良小麦新品系的分子聚合育种[J]. 干旱地区农业研究, 31(02): 6-12+22. (Ou Q M, Cui W J, Wang W, et al. 2013. Molecular pyramiding preeding for creating elite Triticum aestivum lines by introducing Sorghum bicolor DNA via pollen-tube pathway method[J]. Agricultural Research in the Arid Areas, 31(02): 6-12+22.) [29] 欧巧明, 倪建福, 崔文娟, 等. 2011. 高粱DNA导入引起小麦HMW-GS的变异及其品质改良和变异机理分析[J]. 中国粮油学报, 26(01): 15-19. (Ou Q M, Ni J F, Cui W J, et al.2011. Analysis of HMW-GS variation, quality improvement, and variation mechanism in Triticum aestivum induced by Sorghum bicolor DNA introduction[J]. Journal of the Chinese Cereals and Oils Association, 26(01): 15-19.) [30] 潘雷雷, 纪红昌, 黄建斌, 等. 2020. 花粉管通道和农杆菌介导的花生AhFatB基因编辑[J]. 华北农学报, 35(04): 64-70. (Pan L L, Ji H C, Huang J B, et al.2020. Gene editing of AhFatB in Arachis hypogaea via pollen-tube pathway and Agrobacterium-mediated transformation[J]. Journal of North China Agriculture, 35(04): 64-70.) [31] 彭红丽, 苏智先, 王静, 等. 2008. 珙桐花粉离体萌发及花粉管生长研究[J]. 安徽农业科学, 36(31): 13622-13625. (Peng H L, Su Z X, Wang J, et al.2008. Research on the pollen germination and growth in vitro of Davidia involucrata[J]. Journal of Anhui Agricultural Sciences, 36(31): 13622-13625.) [32] 秦迪, 赵翠兰, 郑成忠, 等. 2015. 转BADH基因大豆耐旱性分析[J]. 中国油料作物学报, 37(06): 752-758. (Qin D, Zhao C L, Zheng C Z, et al.2015. Analysis of drought tolerance in transgenic Glycine max with BADH gene[J]. Chinese Journal of Oil Crop Sciences, 37(06): 752-758.) [33] 仇泽, 苏乔, 安利佳. 2008. FITC示踪在优化小麦花粉管通道转化方法中的应用[J]. 西北植物学报, 28(03): 611-616. (Qiu Z, Su Q, An L J.2008. Application of FITC tracing in optimizing the pollen-tube pathway transformation method in Triticum aestivum[J]. Acta Botanica Boreali-Occidentalia Sinica, 28(03): 611-616.) [34] 任晓敏, 云岚, 艾芊, 等. 2024. 新麦草异戊烯基转移酶PjIPT基因的功能验证[J]. 生物技术通报, 40(07): 207-215. (Ren X M, Yun L, Ai Q, et al.2024. Functional verify cation of the Isopentenyltransferase gene PjIPT in Psathyrostachys juncea[J]. Biotech Bulletin, 40(07): 207-215.) [35] 师校欣, 杜国强, 王晓蔓, 等. 2012. 花粉管通道法遗传转化核桃的研究[J]. 园艺学报, 39(07): 1243-1252. (Shi X X, Du G Q, Wang X M, et al.2012. Research on genetic transformation of Juglans regia pollen-tube pathway method[J]. Acta Horticulturae Sinica, 39(07): 1243-1252.) [36] 宋笑明, 谷运红, 洪爱俊, 等. 2009. 授粉方式对小麦花粉管通道转化效果的研究[J]. 郑州大学学报(理学版), 41(01): 120-124. (Song X M, Gu Y H, Hong A J, et al.2009. Research on the effect of pollination methods on transformation efficiency in Triticum aestivum via pollen-tube pathway[J]. Journal of Zhengzhou University (Natural Science Edition), 41(01): 120-124.) [37] 孙珊珊, 王春生, 朱婷婷, 等. 2022. NPR1和Cry1Ab13-1基因双价植物表达载体的构建及在玉米中的转化[J].分子植物育种, 20(13): 4354-4362. (Sun S S, Wang C S, Zhu T T, et al.2022. Construction of a dual gene plant expression vector for NPR1 and Cry1Ab13-1 and its transformation in Zea mays[J]. Molecular Plant Breeding, 20(13): 4354-4362.) [38] 谭平宇. 2022. 百合新种质遗传转化体系的建立[D]. 硕士学位论文, 北京林业大学, 导师: 贾桂霞. pp. 49-55. (Tan P Y.2022. Establishment of a genetic transformation system for new Lilium brownie germplasm[D]. Thesis for M.S., Beijing Forestry University, Supervisor: Jia G X. pp. 49-55.) [39] 唐丽颖, 陈利娜, 敬丹, 等. 2021. 采用花粉管通道法遗传转化月季石榴的研究[J]. 江西农业学报, 33(03): 17-24. (Tang L Y, Chen L N, Jing D, et al.2021. Research on genetic transformation of Punica granatum using the pollen-tube pathway method[J]. Acta Agriculturae Jiangxi, 33(03): 17-24.) [40] 唐文, 张春微, 符艳, 等. 2024. CRISPR/Cas9系统敲除拟南芥dcl2drb4的双链结合蛋白7.2[J/OL]. 分子植物育种, 1-10. (Tang W, Zhang C W, Fu Y, et al.2024. Knockout of double-stranded binding protein 7.2 in Arabidopsis thaliana dcl2drb4 using CRISPR/Cas9 system[J/OL]. Molecular Plant Breeding, 1-10.) [41] 王犇. 2017. 基于花粉管通道法的转基因玉米材料的获得、分子检测和表型鉴定[D]. 硕士学位论文, 长江大学, 导师: 李志新. pp. 7-31. (Wang B.2017. Acquisition, molecular detection, and phenotypic identification of transgenic Zea mays materials based on pollen-tube pathway method[D]. Thesis for M.S., Changjiang University, Supervisor: Zou H J, pp. 7-31.) [42] 王东红, 郭晓雷, 于红梅, 等. 2022. 应用总DNA花粉管导入法改良野生兴安石竹品质培育花卉新品种研究[J]. 现代园艺, 45(08): 1-4. (Wang D H, Guo X L, Yu H M, et al.2022. Research on improving the quality of wild Dianthus chinensis and breeding new flower varieties using total DNA introduction via pollen-tube pathway method[J]. Contemporary Horticulture, 45(08): 1-4.) [43] 王树军, 孙进华, 李焕苓, 等. 2020. 花粉管通道法转化荔枝的初步研究[J]. 热带作物报, 41(02): 252-257. (Wang S J, Sun J H, Li H L, et al.2020. Preliminary study on transformation of Litchi chinensis via pollen-tube pathway method[J]. Journal of Tropical Crops, 41(02): 252-257.) [44] 王思雨. 2022. 宽叶香蒲(Typha latifolia Linn.)遗传转化技术初步研究[D]. 硕士学位论文, 中国林业科学研究院, 导师: 李潞滨. pp. 51-66. (Wang S Y.2022. Preliminary study on genetic transformation techniques of Typha latifolia Linn. [D]. Thesis for M.S., Chinese Academy of Forestry, Supervisor: Li L B. pp. 51-66.) [45] 王志才, 廖茂森, 木合热皮亚·艾尔肯, 等. 2011. 盐穗木耐盐基因通过花粉管通道法对棉花遗传转化的研究[J]. 分子植物育种, 9(02): 180-184. (Wang Z C, Liao M S, Muhe R E, et al.2011. Research on genetic transformation of Gossypium arboreum with salt-tolerant genes from Halostachys caspica via pollen-tube pathway method[J]. Molecular Plant Breeding, 9(02): 180-184.) [46] 吴忠义, 张中保, 黄丛林, 等. 2014. 线性DNA结合细胞穿膜肽的玉米花粉管规模化转基因技术[C]//中国生物工程学会. 中国生物工程学会2014年学术年会暨全国生物技术大会论文集. 北京市农林科学院北京农业生物技术研究中心, 231. (Wu Z Y, Zhang Z B, Huang C L, et al. 2014. A Large-Scale Pollen-Tube Transformation Technology in Maize Using Linear DNA Combined with Cell-Penetrating Peptides [C] // China Society of Biotechnology. Proceedings of the 2014 Annual Conference of the China Society of Biotechnology & National Biotechnology Conference. Beijing Academy of Agriculture and Forestry Sciences, Beijing Agricultural Biotechnology Research Center, 231.) [47] 冼康华, 付传明, 何金祥, 等. 2017. 花粉管通道法介导的铁皮石斛转基因技术[J]. 广西植物, 37(09): 1101-1110. (Xian K H, Fu C M, He J X, et al.2017. Transgenic technology in Dendrobium officinale mediated by pollen-tube pathway method[J]. Guihaia, 37(09): 1101-1110.) [48] 徐建堂. 2006. 红麻Bt基因遗传转化及其遗传稳定性研究[D]. 硕士学位论文, 福建农林大学, 导师: 祁建民. pp. 12-14. (Xu J T.2006. Study on genetic transformation and genetic stability of Bt gene in Hibiscus cannabinus[D]. Thesis for M.S., Fujian Agriculture and Forestry University, Supervisor: Qi J M, pp. 12-14.) [49] 徐丽萍, 喻方圆. 2017. 东京野茉莉雌雄蕊的形态及显微结构[J]. 南京林业大学学报(自然科学版), 41(02): 34-40. (Xu L P, Yu F Y.2017. Microstructure of pistils and stamens in Styrax tonkinensis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 41(02): 34-40.) [50] 许永华, 李美琪, 周新芳, 等. 2022. 人参Pg90B/724B基因异源转染突变体在干旱胁迫下的生理应答[J]. 东北师大学报(自然科学版), 54(04): 106-113. (Xu Y H, Li M Q, Zhou X F, et al.2022. Physiological responses of heterologous transfected mutants with Panax ginseng Pg90B/724B genes under drought stress[J]. Journal of Northeast Normal University(Natural Science Edition), 54(04): 106-113.) [51] 燕树锋, 祝水金, 铁双贵. 2018. 转EPSPS-G6基因抗草甘膦棉花的获得及抗性鉴定[J]. 基因组学与应用生物学, 37(09): 3944-3949. (Yan S F, Zhu S J, Tie S G.2018. Acquisition and resistance identification of EPSPS-G6 glyphosate-resistant transgenic cotton[J]. Genomics and Applied Biology, 37(09): 3944-3949.) [52] 仪登霞, 仝宗永. 2021. 紫花苜蓿遗传转化体系的优化[J]. 分子植物育种, 19(02): 504-511. (Yi D X, Tong Z Y.2021. Optimization of the genetic transformation system in Medicago sativa[J]. Molecular Plant Breeding, 19(02): 504-511.) [53] 易鹏, 侯开卫, 周家齐, 等. 1996. 外源DNA导入木豆及其在育种上的应用[J]. 林业科学研究, 9(05): 91-94. (Yi P, Hou K W, Zhou J Q, et al.1996. Introduction of exogenous DNA into Cajanus cajan and its application in breeding[J]. Forest Research, 9(05): 91-94.) [54] 曾君祉, 吴有强, 王东江, 等. 1998. 花粉管通道(或运载)法转化的植株后代遗传表现及转化机理的探讨[J]. 科学通报, (06): 561-566. (Zeng J Z, Wu Y Q, Wang D J, et al.1998. Genetic expression and transformation mechanism of plant progeny transformed by pollen tube channel (or transport) method[J]. Scientific Notification, (06): 561-566.) [55] 张德建. 2015. 利用花粉管通道法进行水稻种质资源的创新及应用研究[D]. 硕士学位论文, 长江大学, 导师: 李志新. pp. 10-18. (Zhang J D.2015. Research on innovation and application of Oryza sativa germplasm resources using the pollen-tube pathway method[D]. Thesis for M.S., Changjiang University, Supervisor: Li Z X, pp. 10-18.) [56] 张立, 王建锋, 王晓杰, 等. 2013. 花粉管通道法介导小麦抗病相关基因的转化和抗锈性鉴定[J]. 麦类作物学报, 33(01): 29-33. (Zhang L, Wang J F, Wang X J, et al.2013. Transformation and rust resistance identification of disease-resistance related genes in Triticum aestivum mediated by pollen-tube pathway method[J]. Journal of Triticeae Crops, 33(01): 29-33.) [57] 张莉, 王佳, 郑枫, 等. 2018. 子房注射法转化‘紫宝石’蝴蝶兰的研究[J]. 热带作物学报, 39(04): 669-674. (Zhang L, Wang J, Zheng F, et al.2018. Genetic transformation of Phalaenopsis 'Purple Gem' (Orchidaceae) via ovary-injection[J]. Chinese Journal of Tropical Crops, 39(04): 669-674.) [58] 张立全, 牛一丁, 郝金凤, 等. 2011. 通过花粉管通道法导入红树总DNA获得耐盐紫花苜蓿T0代植株及其RAPD验证[J]. 草业学报, 20(03): 292-297. (Zhang L Q, Niu Y D, Hao J F, et al.2011. Obtaining salt-tolerant T0 generation Medicago sativa plants by introducing Rhizophora apiculata total DNA via pollen-tube pathway method and RAPD verification[J]. Acta Prataculturae Sinica, 20(03): 292-297.) [59] 赵贺. 2021. 抗旱抗虫双价基因转化玉米及抗性鉴定[D]. 硕士学位论文, 吉林农业大学, 导师: 王丕武. pp. 30-42. (Zhao H.2021. Transformation of Zea mays with drought-resistant and insect-resistant dual genes and resistance identification[D]. Thesis for M.S., Jilin Agricultural University, Supervisor: Wang P W. pp. 30-42.) [60] 赵鑫闻. 2016. 利用花粉管通道技术将外源银白杨DNA导入黑杨[J]. 植物学报, 51(04): 533-541. (Zhao X W.2016. Introduction of exogenous Populus alba DNA into Populus nigra using pollen-tube pathway technology[J]. Chinese Bulletin of Botany, 51(04): 533-541.) [61] 周光宇, 龚蓁蓁, 王自芬. 1979. 远缘杂交的分子基础——DNA片段杂交假设的一个论证[J].遗传学报, 6(04): 405-413. (Zhou G Y, Gong Z Z, Wang Z F.1979. The molecular basis of distant hybridization-a demonstration of the DNA fragment hybridization hypothesis[J]. Acta Genetica Sinica, 6(04): 405-413.) [62] 周光宇. 1978. 从生物化学的角度探讨远缘杂交的理论[J]. 中国农业科学, 11(02):16-20. (Zhou G Y.1978. Exploring the theory of distant hybridization from a biochemical berspective[J]. Scientia Agricultura Sinica, 11(02): 16-20.) [63] Anami S, Njuguna E, Coussens G, et al.2013. Higher plant transformation: Principles and molecular tools[J]. The International Journal of Developmental Biology, 57(6-8): 483-494. [64] Andreou A I, Nirkko J, Ochoa V M, et al.2021. Mobius assembly for plant systems highlights promoter-terminator interaction in gene regulation[J]. BioRxiv, 2021-03. [65] Andrew B B.2018. CRISPR/Cas9 gene editing and its potential to treat common diseases[J]. Biomedical Journal of Scientific & Technical Research, 5: 1-6. [66] Bai S, Luo H, Tong H, et al.2023. Application and technical challenges in design, cloning, and transfer of large DNA[J]. Bioengineering, 10(12): 1425. [67] Bao H, Ding Y, Yang F, et al.2022. Gene silencing, knockout and over-expression of a transcription factor aborted microspores (AMS) strongly affects pollen viability in tomato (Solanum lycopersicum)[J]. BMC Genomics, 23(1): 346. [68] Cao S, Niu J, Cao Q, et al.2019. Transformation of the rolB gene via the pollen-tube pathway to obtain transgenic pomegranate plants[J]. Acta Horticulturae, (1254): 19-26. [69] Cho L H, Yoon J, An G.2017. The control of flowering time by environmental factors[J]. The Plant Journal, 90(4): 708-719. [70] Dicarlo J E, Sengillo J D, Justus S, et al.2017. CRISPR-Cas genome surgery in ophthalmology[J]. Translational Vision Science & Technology, 6(3): 13. [71] Farooq T, Zain-ul-Hudda Q F, Fatima R, et al.2024. Overexpression of gene GH_A07G1537 associated with fiber quality in upland cotton (Gossypium hirsutum L.) through pollen tube transformation method[EB/OL]. Agrobiological Records, 17: 129-137. [72] Gilbert C, Crits C A, Ledieu D E, et al.2024. Design and construction towards a pan-microbial toolkit[J]. BioRxiv, 2022-2024. [73] Hess D.1980. Investigations on the intra and interspecific transfer of anthocyanin genes using pollen as vectors[J]. International Journal of Plant Physiology, 98(4): 321-337. [74] Huang C, Yang C, Yang H, et al.2024. Systematic investigation and validation of peanut genetic transformation via the pollen tube injection method[J]. Plant Methods, 20(1): 190. [75] Kumari A, Baskaran P, Staden J V.2017. Gene transfer utilizing pollen-tubes of Albuca nelsonii and Tulbaghia violacea[J]. Crop Breeding and Applied Biotechnology, 17(3): 228-234. [76] Li A L, Zhou M, Liao G T, et al.2023. CRISPR/Cas9 gene editing in peanut by Agrobacterium tumefaciens-mediated pollen tube transformation[J]. Journal of Plant Biotechnology, 155(3): 883-892. [77] Li Z L, Nelson R L, Widholm J M, et al.2002. Soybean transformation via the pollen tube pathway[J]. Soybean Genetics Newslett, 29: 1-11. [78] Choudhary N, Jangid A, Dhatwalia S.2017. Direct and Indirect Methods of Gene Transfer in Plants[M]. In Plant Biotechnology, Apple Academic Press, America, Volume 2, pp. 3-28. [79] Liu C, Zhang L, Liu H, et al.2017. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications[J]. Journal of Controlled Release, 266: 17-26. [80] Luo B X, Zhang L, Zheng F, et al.2020. Ovule development and in planta transformation of Paphiopedilum maudiae by Agrobacterium-mediated ovary-injection[J]. International Journal of Molecular Sciences, 22(1): 84. [81] Nagahara S, Higashiyama T, Mizuta Y .2021. Detection of a biolistic delivery of fluorescent markers and CRISPR/Cas9 to the pollen tube[J]. Plant Reproduction, 34(3): 1-15. [82] Pearse A G E.1953. Cytological and cytochemical investigations on the foetal and adult hypophysis in various physiological and pathological states[J]. Journal of Pathology and Bacteriology, 65(2): 355-370. [83] Su W, Xu M, Radani Y, Yang L.2023. Technological development and application of plant genetic transformation[J]. International Journal of Molecular Sciences, 24(13): 10646. [84] Tian C, Liu S, Jiang L, et al.2020. The expression characteristics of methyl jasmonate biosynthesis-related genes in Cymbidium faberi and influence of heterologous expression of CfJMT in Petunia hybrida[J]. Plant Physiology and Biochemistry, 151: 400-410. [85] Wang L H, Liu M, Su Q, et al.2004. Molecular token of transferred soybean via pollen-tube pathway[J]. Molecular Plant Breeding, 2(2): 193-196. [86] Wang M, Sun R, Zhang B, et al.2019. Pollen Tube Pathway-Mediated Cotton Transformation[M]. Transgenic Cotton: Methods and Protocols, Zhang B, New York, NY:Springer New York, 67-73. [87] Wang P, Si H, Li C, et al.2025. Plant genetic transformation: achievements, current status and future prospects[J]. Plant Biotechnology Journal, 23(06): 2034-2058. [88] Wang R, Li R, Xu T, et al.2017. Optimization of the pollen-tube pathway method of plant transformation using the Yellow Cameleon 3.6 calcium sensor in Solanum lycopersicum[J]. Biologia, 72(10): 1147-1155. [89] Yanagawa Y, Suenaga Y, Iijima Y, et al.2023. Genome editing by introduction of Cas9/sgRNA into plant cells using temperature-controlled atmospheric pressure plasma[J]. Public Library of Science ONE, 18(2): 281767. [90] Yang L, Cui G, Wang Y, et al.2017. Expression of foreign genes demonstrates the effectiveness of pollen-mediated transformation in Zea mays[J]. Frontiers in Plant Science, 8: 383. [91] Yang X Y, Luo L L, Mo B X, et al.2019. Targeted genome engineering and its application in trait improvement of crop plants[J]. Agricultural Sciences, 10(10): 1312-1342. [92] Yu C W, Qiao G R, Qiu W M, et al.2018. Molecular breeding of water lily: Engineering cold stress tolerance into tropical water lily[J]. Horticulture Research, 5(1): 73. [93] Zainudin A, Purwoko B S, Santoso T J, et al.2017. Efficiency of genetic transformation via pollen-tube pathway of jatropha (Jatropha curcas L.) based on histochemical and molecular analysis[J]. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 45(3): 316-322. [94] Zeng J, Wu Y, Wang D, et al.1998. Genetic expression in progeny of transgenic plants obtained by using pollen-tube pathway (or delivery) method and approach to the transformation mechanism[J]. Chinese Science Bulletin, 43(10): 798-803. [95] Zeng J Z, Wang D J, Wu Y Q, et al.1994. Transgenic wheat plants obtained with pollen-tube pathway method[J]. Science in China , Ser. B, 37(3): 319. [96] Zhang M, Ma X, Jin G, et al.2023. A modified method for transient transformation via pollen magnetofection in lilium germplasm[J]. International Journal of Molecular Sciences, 24(20): 15304. [97] Zhou M, Luo J, Xiao D, et al.2023. An efficient method for the production of transgenic peanut plants by pollen tube transformation mediated by Agrobacterium tumefaciens[J]. Plant Cell Tissue and Organ Culture, 152(1): 207-214. |
[1] |
LIU Xiao-Qiang, LI Cheng-Hai, WANG Wei-Min, GAO Fei, TIAN Hui-Bin, WANG Li-Zhong, ZHAO Yuan, MA Zong-Wu, HUANG Zhi-Qiang, CAI You-Xin, ZHANG Xiao-Xue. Tissue Expression of TMEM18 Gene and Correlation Analysis Between Its Polymorphism and Feed Conversion Ratio in Hu Sheep (Ovis aries)[J]. 农业生物技术学报, 2025, 33(3): 608-615. |
|
|
|
|