|
|
Study on Screening, Identification and Biological Characterization of Lignin-degrading Fungi |
ZHANG Hao-Sen, LIU Tian-Qi, HU Xin-Miao, ZHANG Ri-Jun, SI Da-Yong* |
College of Animal Science and Technology/Laboratory of Feed Biotechnology/State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China |
|
|
Abstract Lignocellulose, one of the primary components of agricultural waste straw, has a complex structure that limits the efficiency of cellulose degradation, resulting in a low utilization rate of straw resources. To enhance the efficient utilization of agricultural waste, this study isolated 17 fungal strains capable of growing on straw powder medium from soil, distiller's grains, and wild macrofungi samples in Yanbian Korean Autonomous Prefecture, Jilin Province. Through preliminary screening using guaiacol medium and secondary screening based on laccase activity, a highly efficient laccase-producing fungus, Coriolopsis trogii LFB-F1, was identified. Whole-genome sequencing and bioinformatics analysis revealed the genomic characteristics of this strain and the distribution of lignin-degrading genes. The results indicated that the LFB-F1 genome had a total length of 38.8 Mb, with a GC content of 54.93%, and contained 7 497 coding genes, of which 134 were carbohydrate-active enzymes (CAZymes), including 1 laccase gene and 5 lignin peroxidase genes. Biological characterization showed that LFB-F1 exhibited optimal growth at 30 ℃ and pH 5.5, with strong biomass accumulation capability. Enzymatic property analysis revealed that the optimal pH for LFB-F1 laccase activity was 4.5, with an optimal temperature of 45 ℃, and it exhibited good thermal stability at 35 ℃. Studies on the effects of metal ions on laccase activity showed that Cu2+ and Fe2+ had minimal impact, while Mn2+ strongly inhibited the enzyme. Additionally, the laccase retained 92.5% of its activity after 90 d of storage at 4 ℃, demonstrating excellent storage stability. In summary, the fungal strain isolated in this study exhibited lignin-degrading potential. The fungi screened in this study for the high efficiency in degrading lignin can provide theoretical and technical support for the resource utilization and high-value utilization of agricultural waste.
|
Received: 10 March 2025
|
|
Corresponding Authors:
*dayong@cau.edu.cn
|
|
|
|
[1] 曹永佳. 2021. 四种真菌对不同结构木质纤维素降解机制的研究[D]. 硕士学位论文, 北京林业大学, 导师: 戴玉成, 司静, pp. 56-59. (Cao Y J.2021. Research on the degradation mechanisms of different structural lignocellulose by four fungi[D]. Thesis for M.S., Beijing Forestry University, Supervisor: Dai Y C, Si J, pp. 56-59) [2] 高忠坡, 倪嘉波, 李宁宁. 2022. 我国农作物秸秆资源量及利用问题研究[J]. 农机化研究, 44(04): 1-6+25. (Gao Z P, Ni J B, Li N N. 2022. Research on the resource quantity and utilization issues of crop straw in China[J]. Journal of Agricultural Mechanization Research, 44(04): 1-6+25.) [3] 何为, 詹怀宇, 王习文, 等. 2003. 一种改进的漆酶酶活检测方法[J]. 华南理工大学学报(自然科学版), (12): 46-50. (He W, Zhan H Y, Wang X W, et al.2003. An improved method for determining laccase activity[J]. Journal of South China University of Technology (Natural Science Edition), (12): 46-50.) [4] 姬帅, 王新宇, 孙家佳, 等. 2024. Bacillus subtilis HB-011全基因分析及酶学研究[J]. 食品与发酵工业, 1-13. (Ji S, Wang X Y, Sun J J, et al.2024. Whole genome analysis and enzymology of Bacillus subtilis HB-011[J]. Food and Fermentation Industries, 1-13.) [5] 康从宝, 刘巧, 李清心, 等. 2002. 白腐菌产漆酶的纯化及部分酶学性质[J].中国生物化学与分子生物学报, (05):638-642. (Kang C B, Liu Q, Li Q X, et al. 2002. Purification and partial enzymatic properties of laccase produced by white rot fungi[J]. Chinese Journal of Biochemistry and Molecular Biology, (05): 638-642.) [6] 李飞. 2019. 裂解性多糖单加氧酶产生活性氧驱动木质素生物降解[D]. 博士学位论文, 华中农业大学, 导师: 张晓昱, pp. 95-101. (Li F.2019. Reactive oxygen species generated by lytic polysaccharide monooxygenases drive lignin biodegradation[D].Thesis for Ph.D., Huazhong Agricultural University, Supervisor: Zhang X Y, pp. 95-101.) [7] 李烜琦. 2021. 木质纤维素降解菌的筛选及其应用研究[D]. 硕士学位论文, 吉林大学, 导师: 胡玲, pp. 23-25. (Li X Q.2021. Screening and application research of lignocellulose-degrading microorganisms[D]. Thesis for M.S., Jilin University, Supervisor: Hu L. pp. 23-25.) [8] 李雅琳, 李素艳, 孙向阳, 等. 2021. 1株木质素降解菌的筛选、鉴定及液态发酵条件优化[J]. 浙江农林大学学报, 38(06): 1297-1304. (Li Y L, Li S Y, Sun X Y, et al.2021. Screening, identification, and optimization of liquid fermentation conditions for a lignin-degrading strain[J]. Journal of Zhejiang Agriculture and Forestry University, 38(06): 1297-1304.) [9] 倪浩翔. 2021. 木质素驱动裂解性多糖单加氧酶增效纤维素酶解糖化的研究[D]. 博士学位论文, 华中农业大学, 导师: 张晓昱, pp. 46-47. (Ni H X.2021. Study on the enhancement of cellulose enzymatic saccharification by lignin-driven lytic polysaccharide monooxygenases[D]. Thesis for Ph.D., Huazhong Agricultural University, Supervisor: Zhang X Y, pp. 46-47.) [10] 姚昌阳, 谢兴欢, 蒋思婧, 等. 2019. 裂解多糖单加氧酶在毕赤酵母中的异源表达[J]. 湖北大学学报(自然科学版), 41(06): 561-566. (Yao C Y, Xie X H, Jiang S J, et al.2019. Heterologous expression of lytic polysaccharide monooxygenase in Pichia pastoris[J]. Journal of Hubei University (Natural Science Edition), 41(06): 561-566.) [11] 臧思涵, 苏煦涵, 纪骄洋, 等. 2024. 玉米秸秆纤维素低温降解菌的筛选及降解特性分析[J]. 吉林农业大学学报: 1-10. (Zang S H, Su X H, Ji J Y, et al.2024. Screening and degradation characteristics analysis of low-temperature cellulose-degrading microorganisms from corn straw[J]. Journal of Jilin Agricultural University: 1-10.) [12] 史红安, 王燕翎, 仇小艳, 等. 2023. 一种白腐真菌生物学特性及萜类化合物对其防治研究[J].湖北工程学院学报, 43(06): 39-43. (Shi H A, Wang Y L, Qiu X Y, et al.2023. Biological characteristics of a white-rot fungus and research on its control using terpenoids[J]. Journal of Hubei Engineering University, 43(06): 39-43.) [13] 张磊, 刘天昱, 闫成昭, 等. 2024. 一株黑土秸秆降解菌的分离鉴定及培养条件优化[J]. 农业环境科学学报, 1-17. (Zhang L, Liu T Y, Yan C Z, et al.2024. Isolation, identification, and optimization of culture conditions for a straw-degrading strain from black soil[J]. Journal of Agro-Environment Science, 1-17.) [14] 张勇, 李青, 郑志豪, 等. 2024. 榆黄蘑菌渣中漆酶的提取、酶学性质及应用[J]. 食品与机械, 40(10): 188-194. (Zhang Y, Li Q, Zheng Z H, et al.2024. Extraction, enzymatic properties, and applications of laccase from Pleurotus citrinopileatus residue[J]. Food and Machinery, 40(10): 188-194.) [15] 张元晶, 魏刚, 张小冬, 等. 2012. 木质纤维素生物质预处理技术研究现状[J]. 中国农学通报, 28(11): 272-277. (Zhang Y J, Wei G, Zhang X D, et al.2012. Research status of pretreatment technologies for lignocellulosic biomass[J]. Chinese Agricultural Science Bulletin, 28(11):272-277.) [16] Bhujbal S K, Kumar M, Vijay V K, et al.2021. Potential of termite gut microbiota for biomethanation of lignocellulosic wastes: Current status and future perspectives[J]. Reviews in Environmental Science and Bio-Technology, 20(2): 419-438. [17] Chu X, Awasthi M K, Liu Y, et al.2021. Studies on the degradation of corn straw by combined bacterial cultures[J]. Bioresource Technology, 320(A): 124174. [18] Datsomor O, Yan Q, Wang K P, et al.2022. Effect of ammoniated and/or Basidiomycete white-rot fungi treatment on rice straw proximate composition, cell wall component, and in vitro rumen fermentation characteristics[J]. Fermentation-Basel, 8(5): 228. [19] Eibinger M, Sattelkow J, Ganner T, et al.2017. Single-molecule study of oxidative enzymatic deconstruction of cellulose[J]. Nature Communications, 8: 894. [20] Guan Y, Zhu H, Zhu Y, et al.2022. Microbial consortium composed of Cellulomonas ZJW-6 and Acinetobacter DA-25 improves straw lignocellulose degradation[J]. Archives of Microbiology, 204(2): 139. [21] Harris P V, Xu F, Kreel N E, et al.2014. New enzyme insights drive advances in commercial ethanol production[J]. Current Opinion in Chemical Biology, 19: 162-170. [22] Liu M, Xu L X, Yin Z X, et al.2025. Harnessing the potential of exogenous microbial agents: A comprehensive review on enhancing lignocellulose degradation in agricultural waste composting[J]. Archives of Microbiology, 207(3): 51. [23] Ma Y L, Chen X, Khan M Z, et al.2022. A combination of novel microecological agents and molasses role in digestibility and fermentation of rice straw by facilitating the ruminal microbial colonization[J]. Frontiers in Microbiology, 13: 948049. [24] Merino S T, Cherry J.2007. Progress and challenges in enzyme development for biomass utilization[J]. Biofuels, 108: 95-120. [25] Mesle M M, Mueller R C, Peach J, et al.2022. Isolation and characterization of lignocellulose-degrading Geobacillus thermoleovorans from Yellowstone National Park[J]. Applied and Environmental Microbiology, 88(9): e00958-21. [26] Picart P, Wiermans L, Pérez-Sánchez M, et al.2016. Assessing lignin types to screen novel biomass-degrading microbial strains: Synthetic lignin as useful carbon source[J]. ACS Sustainable Chemistry & Engineering, 4(3): 651-655. [27] Reshmy R, Philip E, Madhavan A, et al.2022. Lignocellulose in future biorefineries: Strategies for cost-effective production of biomaterials and bioenergy[J]. Bioresource Technology, 344(B): 126241. [28] Wang W B, Nie Y S, Tian H, et al.2022. Microbial community, co-occurrence network relationship and fermentation lignocellulose characteristics of Broussonetia papyrifera ensiled with wheat bran[J]. Microorganisms, 10(10): 2015. [29] Zhang B, Ren D, Liu Q, et al.2023.Coproduction of single cell protein and lipid from lignocellulose derived carbohydrates and inorganic ammonia salt with soluble ammonia recycling[J]. Bioresource Technology, 384: 129345. [30] Zhang W, Diao C, Wang L.2023. Degradation of lignin in different lignocellulosic biomass by steam explosion combined with microbial consortium treatment[J]. Biotechnology for Biofuels and Bioproducts, 16(1): 55. [31] Zhang W, Wang W, Wang J, et al.2021. Isolation and characterization of a novel laccase for lignin degradation, LacZ1[J]. Applied and Environmental Microbiology, 87(23): e01355-21. [32] Zhou X F.2021. Transformation of lignin model compound and lignin by graphene oxide immobilized laccase[J]. Chiang Mai Journal of Science, 48(1): 176-184. [33] Zhu Y, Zhang H, Zhang Y, et al.2011. Lignocellulose degradation, enzyme production and protein enrichment by trametes versicolor during solid-state fermentation of corn stover[J]. African Journal of Biotechnology, 10(45): 9182-9192. |
|
|
|