|
|
Cloning of SMT Gene in Cynanchum auriculatum and Its Expression Analysis Under Abiotic Stresses |
LIU Xin-Yue1, SU Xiao-Xue1, GUO Jia-Min1, ZANG Yue1, SUN Miao1,2, SHEN Min1,2, HONG Jian1,2, LI Xiang1,2, ZHANG Wen-Xuan1, LIU Fang-Fang1,2,*, KANG Yi-Jun1,2,* |
1 School of Marine and Biological Engineering/Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng 224007, China; 2 Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng 224007, China |
|
|
Abstract Phytosterols play crucial roles in plant growth, development, and stress resistance, with C24-sterol methyltransferase (SMT) serving as a key rate-limiting enzyme in phytosterol biosynthesis pathway. Cynanchum auriculatum is rich in phytosterol-based bioactive components, to investigate the function of SMT in phytosterol biosynthesis and abiotic stress response in C. auriculatum, the genes encoding SMT were cloned based on transcriptome data, bioinformatic analysis was carried out, and the gene expression levels under abiotic stresses were detected by qRT-PCR. The results showed that 2 genes with ORF of 1 041 and 1 080 bp were cloned and named CaSMT1 (GenBank No. PV701631) and CaSMT2 (GenBank No. PV701632), respectively. CaSMT1 encoded a protein consisting of 346 amino acids, with a relative molecular weight of 38.65 kD and a theoretical isoelectric point of 6.33. CaSMT1 was a hydrophilic protein without signal peptide. CaSMT2 encoded a protein consisting of 359 amino acids, with a relative molecular weight of 40.16 kD and a theoretical isoelectric point of 6.42. CaSMT2 protein contained transmembrane domain and was localized to the plasma membrane. Both CaSMT proteins contained canonical sterol C-24 methyltransferase C-terminal domains, with secondary structures predominantly composed of alpha helix and random coil. Phylogenetic analysis revealed that CaSMT1 and CaSMT2 clustered into distinct clades, both exhibiting the closest phylogenetic relationship with their corresponding SMT in Calotropis procera. qRT-PCR analysis revealed distinct tissue-specific expression patterns for both genes, with significantly higher expression levels in roots and leaves compared with stems. Furthermore, steroidal glycoside accumulation exhibited concordant variation patterns with gene expression levels across all examined tissues. Under various abiotic stresses including salt, drought, heat, and cold, CaSMT1 exhibited significant upregulation across all tested conditions. In contrast, CaSMT2 showed distinct stress-responsive patterns: Marked upregulation under heat and cold stress, downregulation under drought stress, and no significant response to salinity. This differential regulation demonstrated the involvement of CaSMT paralogs in adaptive responses of C. auriculatum to diverse abiotic stresses. This study provides theoretical insights for improving stress resistance and enhancing the content of active component in medicinal plants.
|
Received: 05 March 2025
|
|
Corresponding Authors:
*liuff@yctu.edu.cn; yjkang@yctu.edu.cn
|
|
|
|
[1] 龚树生. 1987. 白首乌的系统研究[J]. 中国医药学报, 2(02): 23-25. (Gong S S.Systematic study on Bai-shou-wu(Cynanchum spp.)[J]. Acta Medica Sinica, 2(02): 23-25.) [2] 郭凤丹, 管仁伟, 赵秋晨, 等. 2022. 药用植物盐胁迫响应机理研究进展[J]. 山东农业科学, 54(09): 148-157. (Guo F D, Guan R W, Zhao Q C, et al.2022. Research progress on salt stress response mechanism of medicinal plants[J]. Shandong Agricultural Sciences, 54(09): 148-157.) [3] 郭娜, 李晓鹏, 许枬, 等. 2016. 耳叶牛皮消中C21甾类化学成分的分离与鉴定[J]. 沈阳药科大学学报, 33(01): 28-33. (Guo N, Li X P, Xu N, et al.2016. Isolation and identification of C21 steroids from Cynanchum auriculatum[J]. Journal of Shenyang Pharmaceutical University, 33(01): 28-33.) [4] 黄小龙, 翟立升, 闫慧清. 2020. 水稻C24-甾醇甲基转移酶基因OsSMT2的生物信息学分析[J]. 西南农业学报, 33(03):461-468. (Huang X L, Zhai L S, Yan H Q.2020. Bioinformatics analysis of C24-sterol methyltransferase gene OsSMT2 in rice[J]. Southwest China Journal of Agricultural Sciences, 33(03): 461-468.) [5] 林江波, 王伟英, 邹晖, 等. 2020. 铁皮石斛DoSMT2基因的克隆与表达分析[J]. 热带亚热带植物学报, 28(6): 591-598. (Lin J B, Wang W Y, Zou H, et al.2020. Cloning and expression analysis of DoSMT2 gene in Dendrobium officinale[J]. Journal of Tropical and Subtropical Botany, 28(6): 591-598.) [6] 林燕, 石云, 杨宇, 等. 2024. 不同生长期滨海白首乌叶主要成分与生物活性分析[J]. 食品与械, 40(10):148-155. (Lin Y, Shi Y, Yang Y, et al.2024. Analysis and application of the main functional components and biological activity of the Cynanchum auriculatum Royle ex Wight leaf in different growth stages[J]. Food & Machinery, 40(10):148-155.) [7] 钱虹萍, 林金星, 崔亚宁. 2021. 固醇合成途径关键基因SMT2、SMT3在植物免疫中的功能研究[J]. 电子显微学报, 40(02): 170-177. (Qian H P, Lin J X, Cui Y N.2021. Function analysis of key genes SMT2 and SMT3 of sterol synthesis pathway in plant immunity[J]. Journal of Chinese Electron Microscopy Society, 40(02): 170-177.) [8] 孙淼, 许钦奕, 朱志鹏, 等. 2022. 耳叶牛皮消的全长转录组测序及其重要活性物质代谢通路的分析[J]. 基因组学与应用生物学, 41(06): 1286-1304. (Sun M, Xu Q Y, Zhu Z P, et al.2022. Full-length transcriptomic sequencing of Cynanchum auriculatum and metabolic pathway analysis of important active substances[J]. Genomics and Applied Biology, 41(06): 1286-1304.) [9] 印鑫, 丁永芳, 邵久针, 等. 2019. 白首乌的研究进展[J]. 中草药, 50(04): 992-1000. (Yin X, Ding Y F, Shao J Z, et al.2019. Research progress on Cynanchi Bungei Radix[J]. Chinese Traditional and Herbal Drugs, 50(04): 992-1000.) [10] 张明, 沈明晨, 陈镭, 等. 2022. 白首乌的化学成分、药理作用及栽培技术综述[J]. 江苏农业科学, 50(02): 22-29. (Zhang M, Shen M C, Chen L, et al.2022. On chemical constituent, pharmacological effect and cultivation techniques of Cynanchum bungei: A review[J]. Jiangsu Agricultural Sciences, 50(02): 22-29.) [11] 赵曼, 孔珂昕, 薛露, 等. 2022. 植物甾醇及其衍生物的生物合成途径研究进展[J]. 中草药, 53(18): 5884-5898. (Zhao M, Kong K X, Xue L, et al.2022. Research progress on biosynthesis of phytosterols and their derivatives[J]. Chinese Traditional and Herbal Drugs, 53(18): 5884-5898.) [12] 智博洋, 雷龙, 黄思曙, 等. 2025. 水稻环阿屯醇C-24甲基转移酶的克隆及功能研究[J]. 热带生物学报, 16(1): 1-12. (Zhi B Y, Lei L, Huang S S, et al.2025. Identification and functional analysis of sterol C-24 methyltransferase in rice[J]. Journal of Tropical Biology, 16(1): 1-12.) [13] 朱志鹏, 虞健翔, 沈敏, 等. 2023. 非生物胁迫下耳叶牛皮消荧光定量PCR内参基因的筛选[J]. 中药材, 46(10): 2430-2436. (Zhu Z P, Yu J X, Shen M, et al.2023. Selection of reference genes for qRT-PCR analysis in Cynanchum auriculatum under abiotic stress[J]. Journal of Chinese Medicinal Materials, 46(10): 2430-2436.) [14] Carland F, Fujioka S, Nelson T.2010. The sterol methyltransferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products[J]. Plant Physiology, 153(2): 741-756. [15] Chen M, Chen J J, Luo N, et al.2018. Cholesterol accumulation by suppression of SMT1 leads to dwarfism and improved drought tolerance in herbaceous plants[J]. Plant, Cell & Environment, 41(6): 1417-1426. [16] Chen W H, Zhang Z Z, Ban Y F, et al.2019. Cynanchum bungei Decne and its two related species for "Baishouwu": A review on traditional uses, phytochemistry, and pharmacological activities[J]. Journal of Ethnopharmacology, 243: 112110. [17] De Vriese K, Pollier J, Goossens A, et al.2021. Dissecting cholesterol and phytosterol biosynthesis via mutants and inhibitors[J]. Journal of Experimental Botany, 72(2): 241-253. [18] Divi U K, Krishna P.2009. Brassinosteroid: A biotechnological target for enhancing crop yield and stress tolerance[J]. New Biotechnology, 26(3-4): 131-136. [19] Guan H Y, Su P, Zhao Y J, et al.2018. Cloning and functional analysis of two sterol-C24-methyltransferase 1 (SMT1) genes from Paris polyphylla[J]. Journal of Asian Natural Products Research, 20(7): 595-604. [20] Guan H Y, Zhao Y J, Su P, et al.2017. Molecular cloning and functional identification of sterol C24-methyltransferase gene from Tripterygium wilfordii[J]. Acta Pharmaceutica Sinica B, 7(5): 603-609. [21] Guo S Y, Yin Y, Lei T, et al.2021. A cycloartenol synthase from the steroidal saponin biosynthesis pathway of Paris polyphylla[J]. Journal of Asian Natural Products Research, 23(4): 353-362. [22] Li Y, Li Z H, Zhang F R, et al.2023. Integrated evolutionary pattern analyses reveal multiple origins of steroidal saponins in plants[J]. The Plant Journal, 116(3): 823-839. [23] Michellod D, Bien T, Birgel D, et al.2023. De novo phytosterol synthesis in animals[J]. Science, 380(6644): 520-526. [24] Neelakandan A K, Nguyen H T, Kumar R, et al.2010. Molecular characterization and functional analysis of Glycine max sterol methyl transferase 2 genes involved in plant membrane sterol biosynthesis[J]. Plant Molecular Biology, 74: 503-518. [25] Neelakandan A K, Song Z, Wang J, et al.2009. Cloning, functional expression and phylogenetic analysis of plant sterol 24C-methyltransferases involved in sitosterol biosynthesis[J]. Phytochemistry, 70(17-18):1982-1998. [26] Pal S, Rastogi S, Nagegowda D A, et al.2019. RNAi of sterol methyl transferase1 reveals its direct role in diverting intermediates towards withanolide/phytosterol biosynthesis in Withania somnifera[J]. Plant & Cell Physiology, 60(3): 672-686. [27] Shi J, Gonzales R A, Bhattacharyya M K.1996. Identification and characterization of an S-adenosyl-L-methionine: Delta 24-sterol-C-methyltransferase cDNA from soybean[J]. The Journal of Biological Chemistry, 271(16): 9384-9389. [28] Tarazona P, Feussner K, Feussner I.2015. An enhanced plant lipidomics method based on multiplexed liquid chromatography-mass spectrometry reveals additional insights into cold- and drought-induced membrane remodeling[J]. The Plant Journal, 84(3): 621-633. [29] Wang L, Cai F J, Zhao W, et al.2021. Cynanchum auriculatum Royle ex Wight., Cynanchum bungei Decne. and Cynanchum wilfordii (Maxim.) Hemsl.: Current research and prospects[J]. Molecules, 26(23): 7065. [30] Wang P L, Tan X R, Li W L, et al.2024. Overexpression of CrSMT gene enhances salt stress tolerance by improving cotton peroxidation resistance[J]. Plant Stress, 14: 100633. [31] Wang X J, Lv X H, Li Z L, et al.2018. Chemical constituents from the root bark of Cynanchum auriculatum[J]. Biochemical Systematics and Ecology, 81: 30-32. [32] Zhang X, Lin K Q, Li Y X.2020. Highlights to phytosterols accumulation and equilibrium in plants: Biosynthetic pathway and feedback regulation[J]. Plant Physiology and Biochemistry, 155: 637-649. |
|
|
|