|
|
Identification and Expression Analysis of OSCA Gene Family in Ginger (Zingiber officinale) |
LONG Cha1,2,3, WANG Tao1,2, HUA He-Lan4, WU Yuan1,2, SU Shi-Xian1, WEI Jin-Jiang1,2, JIANG Su-Yan1, MOU Hai-Lin1,2, ZHU Hong-Jiang1,2, LYU Jin-Li5, XIA Ying-Shu6, LI Wei1,2,3,* |
1 College of Agriculture, Guizhou University, Guiyang 550025, China; 2 Vegetable Research Institute, Guizhou University, Guiyang 550025, China; 3 Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions, Guiyang 550025, China; 4 Huaxi District Plant Protection Station, Guiyang, 550025, China; 5 Liupanshui Academy of Agricultural Sciences, Liupanshui 553000, China; 6 Guizhou Qiantangjiang Biotechnology Co., Ltd., Anshun, 561200 China |
|
|
Abstract Hyperosmolarity gate calcium-permeable channels (OSCA) is a mechanosensitive porous ion channel, which can regulate Ca2+ concentration and water transport rate in plant cells under osmotic stress. It plays an important role in hypertonic stress in plants. In order to understand the structural characteristics and expression characteristics of OSCA gene family in ginger, this study identified and analyzed the OSCA gene family in ginger (Zingiber officinale). The results showed that 38 members of OSCA gene family were identified from ginger genome, which were located on 14 chromosomes respectively. The prediction of subcellular localization shows that the members of OSCA family in ginger were mainly located in plasma membrane. The analysis of cis-acting elements of promoters showed that 38 ZoOSCAs contained various response elements to adversity and hormone, such as methyl jasmonate, abscisic acid and drought. The transcriptome of salt stress and fluorescence quantitative results of drought treatment showed that the expression levels of 18, 23 family members in leaves and rhizomes were up-regulated under salt stress, and 11 out of 14 family members were up-regulated under drought treatment, and the expression levels of ZoOSCAs in different tissues were different. This study provides basic data for revealing the function and mechanism of ZoOSCAs.
|
Received: 07 July 2023
|
|
Corresponding Authors:
* wli@gzu.edu.cn
|
|
|
|
[1] 邓智超, 田冬冬, 宋青松, 等. 2022. 烟草OSCA基因家族鉴定及非生物胁迫诱导表达模式分析[J]. 中国烟草科学, 43(1): 14-21. (Deng Z C, Tian D D, Song Q S, et al.2022. Genome wide identification and expression analysis of the OSCA gene family in response to abiotic stresses in tobacco[J]. Chinese Tobacco Science, 43(1): 14-21.) [2] 高原, 程紫涵, 姜嘉慧,等. 2022. 小黑杨LBD基因家族全基因组鉴定及耐盐性分析[J]. 山西农业大学学报 (自然科学版), 42(4): 46-55. (Gao Y, Cheng Z H, Jiang J H, et al.2022. Genome wide identification and salt tolerance analysis of the LBD gene family in Populus simonii×P. nigra[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 42(4): 46-55.) [3] 姜玉松, 李洪雷, 李哲馨, 等. 2022. 基于转录组数据的生姜ZoWRKY基因家族鉴定及逆境响应分析[J]. 作物杂志(4): 37-45. (Jiang Y S, Li H L, Li Z X, et al.2022. Identification and expression analysis of the ZoWRKY family in stress responses based on transcriptome data of ginger (Zingiber officinale Roscoe)[J]. Crops, (4): 37-45.) [4] 李嘉琪, 罗石磊, 张帅磊, 等. 2022. 辣椒OSCA基因家族的全基因组鉴定及不同胁迫条件下表达分析[J]. 植物科学学报, 40(2): 187-196. (Li J J Q, Luo S L, Zhang S L, et al.2022. Genome-wide identification of pepper OSCA gene family and expression analysis under different stress conditions[J]. Plant Science Journal, 40(2): 187-196.) [5] 李建伟, 杨臖凯, 贾博为, 等. 2017. 大豆基因组中OSCA基因家族的进化和表达分析[J]. 中国油料作物学报, 39(5): 589-599. (Li J W, Yang J K, Jia B W, et al.2017. Evolution and expression analysis of OSCA gene family in soybean[J]. Chinese Journal of Oil Crop Sciences, 39(5): 589-599.) [6] 刘晓洲, 郭浩轩, 卓定龙, 等. 2021. 干旱复水对白姜花光合和叶绿素荧光参数的影响[J]. 中国农学通报, 37(34): 84-89. (Liu X Z, Guo H X, Zhuo D L, et al.2021. Effects of drought and rewatering on photosynthesis and chlorophyll fluorescence of Hedychium coronarium[J]. Chinese Agricultural Science Bulletin, 37(34): 84-89.) [7] 刘营, 江姚兰, 尹泽, 等. 2022. 甘蓝型油菜BnFUL基因家族全基因组鉴定与表达分析[J]. 中国油料作物学报, 44(1): 35-44. (Liu Y, Jiang Y L, Yin Z, et al.2022. Genome-wide identification and expression analysis of BnFUL gene family in Brassica napus[J]. Chinese Journal of Oil Crop Sciences, 44(1): 35-44.) [8] 路秉翰, 卓定龙, 刘晓洲, 等. 2022. 干旱胁迫对红玉姜黄光合和叶绿素荧光参数的影响[J]. 热带农业科学, 42(6): 11-16. (Lu B H, Zhuo D L, Liu X Z, et al.2022. Effect of drought stress on photosynthetic and chlorophyll fluorescence parameters of curcuma 'Hongyu'[J]. Chinese Journal of Tropical Agriculture, 42(6): 11-16.) [9] 仇学文, 徐梦怡, 邵淳轩, 等. 2022. 辣椒OSCA基因家族的鉴定与表达分析[J]. 分子植物育种, 1-14. (Qiu X W, Xu M Y, Shao C X, et al.2022. Identification and expression analysis of OSCA gene family in pepper[J]. Molecular Plant Breeding, 1-14.) [10] 申晴, 殷亚蕊, 武军凯, 等. 2020. 桃MYB3基因的克隆及表达分析[J]. 河北果树,(02): 8-10, 18, 67., 18, 67.) [11] 王傲雪, 张可为, 张瑶,等. 2019. 番茄OSCA基因家族鉴定及不同胁迫条件下表达分析[J]. 东北农业大学学报, 50(1): 19-28. (Wang A X, Zhang K W, Zhang Y, et al.2019. Identification of tomato OSCA gene family and expression analysis under different stress conditions[J]. Journal of Northeast Agricultural University, 50(1): 19-28.) [12] 王秋媛. 2022. 生姜品种引进与比较试验[J]. 耕作与栽培, 42(1): 76-77, 80. (Wang Q Y. 2022. Introduction and comparative test of ginger varieties[J]. Tillage and Cultivation, 42(1): 76-77, 80.) [13] 王允, 张逸, 刘灿玉, 等. 2016. 干旱胁迫下外源ABA对姜叶片活性氧代谢的影响[J]. 园艺学报, 43(3): 587-594. (Wang Y, Zhang Yi, Liu C Y, et al.2016. Effects of exogenous abscisic acid on active oxygen metabolism in ginger leaves under drought stress[J]. Acta Horticulturae Sinica, 43(3): 587-594.) [14] 王照, 鲁敏, 南红, 等. 2022. 缫丝花OSCA基因家族的鉴定与表达分析[J]. 植物生理学报, 58(2): 350-362. (Wang Z, Lu M, Nan H, et al.2022. Identification and expression analysis of OSCA gene family in Rosa roxburahii Tratt[J]. Plant Physiology Communications, 58(2): 350-362.) [15] 闫芹芹. 2020. 拟南芥高渗诱导Ca2+通道蛋白OSCA1的表达、结晶及晶体初步分析[J]. 南开大学学报(自然科学版), 5 (53): 101. (Yan Q. 2020. Expression, crystallization and crystal analysis of Ca2+ channel protein OSCA1 induced by hyperosmotic stress in Arabidopsis thaliana[J]. Journal of Nankai University (Natural Science Edition), 5(53): 101.) [16] 杨杞, 牛肖翠, 王瑞刚, 等. 2019. 蒺藜苜蓿DUF221基因家族全基因组鉴定及盐响应相关基因筛选[J]. 分子植物育种, 17(16): 5255-5262. (Yang Q, Niu X C, Wang R G, et al.2019. Genome-wide characterization of DUF221 gene family in Medicago truncatula and screening for salt response genes[J]. Molecular Plant Breeding, 17(16): 5255-5262.) [17] 张杰, 陈兴浩, 庞丁玮, 等. 2022. 毛果杨OSCA基因家族的鉴定及其在盐胁迫下的表达分析[J]. 分子植物育种, 20(13): 4323-4330. (Zhang J, Chen X H, Pang D W, et al.2022. Identification of Populus tomentosa OSCA gene family and its expression analysis under salt stress[J]. Molecular Plant Breeding, 20(13): 4323-4330.) [18] 张可为. 2019. 番茄钙离子通道OSCA基因家族的鉴定及胁迫响应分析[D]. 硕士学位论文, 东北农业大学, 导师:王傲雪, pp: 34-50. (Zhang K W.2019. Identification and stress response analysis of OSCA gene family of tomato calcium channel[D]. Thesis for M.S., Northeast Agricultural University, Supervisor: Wang A X, pp: 34-50.) [19] Bartls D S R.2005. Drought and salt to lerance in plants[J]. Crit-cal Reviewsin Plant Sciences, 1(24): 23-58. [20] Batistič O, Kudla J.2012. Analysis of calcium signaling pathways in plants[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820(8): 1283-1293. [21] Cai Q, Wang Y, Ni S, et al.2022. Genomewide identification and analysis of the OSCA gene family in barley (Hordeum vulgare L.)[J]. Journal of Genetics, 101: 2-34. [22] Cao L, Zhang P, Lu X, et al.2020. Systematic analysis of the maize OSCA genes revealing ZmOSCA family members involved in osmotic stress and ZmOSCA2.4 confers enhanced drought tolerance in transgenic Arabidopsis[J]. International Journal of Molecular Sciences, 21(1): 351. [23] Chen C, Chen H, Zhang Y, et al.2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 13(8): 1194-1202. [24] Ding S, Feng X, Du H, et al.2019. Genome-wide analysis of maize OSCA family members and their involvement in drought stress[J]. PeerJ, 7: e6765. [25] Dodd A N, Kudla J, Sanders D.2010. The language of calcium signaling[J]. Annual Review of Plant Biology, 61: 593-620. [26] Ganie S A, Pani D R, Mondal T K.2017. Genome-wide analysis of DUF221 domain-containing gene family in Oryza species and identification of its salinity stress-responsive members in rice[J]. PLOS One, 12(8): e0182469. [27] Gu X, Wang P, Liu Z, et al.2018. Genome-wide identification and expression analysis of the OSCA gene family in Pyrus bretschneideri[J]. Canadian Journal of Plant Science, 98(4): 918-929. [28] Hou C, Tian W, Kleist T, et al.2014. DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes[J]. Cell Research, 24(5): 632-635. [29] Hedrich R.2012. Ion channels in plants[J]. Physiological Reviews, 92(4): 1777-1811. [30] Jezek M, Blatt M R.2017. The membrane transport system of the guard cell and its integration for stomatal dynamics[J]. Plant Physiology, 174(2): 487-519. [31] Jiang D, Xia M, Xing H, et al.2023. Exploring the heat shock transcription factor (HSF) gene family in ginger: A genome-wide investigation on evolution, expression profiling, and response to developmental and abiotic stresses[J]. Plants, 12(16): 2999. [32] Jiang Z, Zhou X, Tao M, et al.2019. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx[J]. Nature, 572(7769): 341-346. [33] Jiang Y, Huang M, Wisniewski M, et al.2018. Transcriptome analysis provides insights into gingerol biosynthesis in ginger (Zingiber officinale)[J]. Plant Genome, 11(3): 180034. [34] Lecourieux D, Ranjeva R, Pugin A.2006. Calcium in plant defence-signalling pathways[J]. New Phytologist, 171(2): 249-269. [35] Li H, Wu L, Dong Z, et al.2022. Haplotype-resolved genome of diploid ginger (Zingiber officinale) and its unique gingerol biosynthetic pathway[J]. Horticulture Research, 8(1): 2662-6810. [36] Li Y, Yuan F, Wen Z, et al.2015. Genome-wide survey and expression analysis of the OSCA gene family in rice[J]. BMC Plant Biology, 15(1): 2-9. [37] Li Y, Zhang Y, Li B, et al.2022. Preliminary expression analysis of the OSCA gene family in maize and their involvement in temperature stress[J]. International Journal of Molecular Sciences, 23(21): 13658. [38] Liu M, Lv Y, Cao B, et al.2023. Physiological and molecular mechanism of ginger (Zingiber officinale) seedling response to salt stress[J]. Frontiers in Plant Science, 14: 1073434. [39] Liu X, Wang J, Sun L.2018. Structure of the hyperosmolality-gated calcium-permeable channel OSCA1. 2[J]. Nature Communications, 9(1): 5060-5068. [40] Miao S, Li F, Han Y, et al.2022. Identification of OSCA gene family in Solanum habrochaites and its function analysis under stress[J]. BMC Genomics, 23(1): 1-14. [41] Shan F, Wu Y, Du R, et al.2023. Evolutionary analysis of the OSCA gene family in sunflower (Helianthus annuus L.) and expression analysis under NaCl stress[J]. PeerJ, 11: e15089. [42] Thor K, Jiang S, Michard E, et al.2020. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity[J]. Nature, 585(7826): 569-573. [43] Tian S, Wan Y, Jiang D, et al.2023. Genome-wide identification, characterization, and expression analysis of GRAS gene family in ginger (Zingiber officinale Roscoe)[J]. Genes, 14(1): 96. [44] Tong K, Wu X, He L, et al.2021. Genome-wide identification and expression profile of OSCA gene family members in Triticum aestivum L.[J]. International Journal of Molecular Sciences, 23(1): 469. [45] Wadskog I, Forsmark A, Rossi G, et al.2006. The yeast tumor suppressor homologue Sro7p is required for targeting of the sodium pumping ATPase to the cell surface[J]. Molecular Biology of the Cell, 17: 4988-5003. [46] Waseem M, Aslam M M, Shaheen I.2021. The DUF221 domaincontaining (DDP) genes identification and expression analysis in tomato under abiotic and phytohormone stress[J]. GM Crops & Food, 12(1): 586-599. [47] Xing H T, Jiang Y S, Zou Y, et al.2021. Genome-wide investigation of the AP2/ERF gene family in ginger: Evolution and expression profiling during development and abiotic stresses[J]. BMC Plant Biology, 21: 561. [48] Yang X, Xu Y C, Yang F F, et al.2019. Genome-wide identification of OSCA gene family and their potential function in the regulation of dehydration and salt stress in Gossypium hirsutum[J]. Journal of Cotton Research, 2: 11. [49] Yang S, Zhu C, Chen J, et al.2022. Identification and expression profile analysis of the OSCA gene family related to abiotic and biotic stress response in cucumber[J]. Biology, 11(8): 1134. [50] Yin F, Liu X, Cao B, et al.2020. Low pH altered salt stress in antioxidant metabolism and nitrogen assimilation in ginger (Zingiber officinale) seedlings[J]. Physiologia Plantarum, 168(3): 648-659. [51] Yin L, Zhang M, Wu R, et al.2021. Genome-wide analysis of OSCA gene family members in Vigna radiata and their involvement in the osmotic response[J]. BMC Plant Biology, 21(1): 2-8. [52] Yuan F, Yang H, Xue Y, et al.2014. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis[J]. Nature, 514(7522): 367-371. [53] Zaynab M, Peng J, Sharif Y, et al.2022. Genome-wide identification and expression profiling of DUF221 gene family provides new insights into abiotic stress responses in potato[J]. Frontiers in Plant Science, 12: 804600. [54] Zhai Y, Wen Z, Fang W, et al.2021. Functional analysis of rice OSCA genes overexpressed in the Arabidopsis osca1 mutant due to drought and salt stresses[J]. Transgenic Research, 30(6): 811-820. [55] Zhang M, Wang D, Kang Y, et al.2018. Structure of the mechanosensitive OSCA channels[J]. Nature Structural & Molecular Biology, 25(9): 850-858. [56] Zhu J.2002. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 53(1): 247-273. [57] Zhu J, Zhang B, Smith E N, et al.2008. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks[J]. Nature Genetics, 40(7): 854-861. |
|
|
|