|
|
Research Progress on Degradation of Fluoroquinolones by Environmental Microorganisms |
SHEN Shu-Qing1,3, LIANG Yi3, MA Jia-Wei4, SUN Yong-Xue3,*, WANG Mei1,2,* |
1 College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China; 2 Zhejiang Key Laboratory of Applied Technology of Green Ecological and Healthy Breeding of Livestock and Poultry, Hangzhou 311300, China; 3 College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; 4 College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China |
|
|
Abstract Fluoroquinolones (FQs) are one of the most commonly used antibiotics for human medicine and animal breeding. Due to their large dosage, FQs are widely retained in the environment, posing potential threat to human and animal health. Microbial degradation is an ideal way to eliminate FQs in the environment at this stage, which has the characteristics of high efficiency, green and low cost. At present, the research on microbial degradation of FQs mainly focuses on the screening of degradable microorganisms and the identification of degradation products. This paper reviewed the functional characteristics of FQs degradation of bacteria, fungi, microalgae and microorganisms, and summarized the common degradation pathways and key enzymes. This review provides a theoretical basis for alleviating the environmental residue problem of FQs.
|
Received: 17 August 2023
|
|
Corresponding Authors:
* Corresponding authors, sunyx@scau.edu.cn; meiwang@zafu.edu.cn
|
|
|
|
[1] 白政忠, 张秋生, 盛龙生. 2000. 喹诺酮类抗菌药光降解动力学及光降解物研究进展[J]. 中国药事, 2000(05): 42-45. (Bai Z Z, Zhang Q S, Sheng L S.2000. Research progress on photodegradation kinetics and photodegradants of quinolones antibiotics[J]. Chinese Pharmaceutical Affairs, 2000(05): 42-45.) [2] 成登苗, 李兆君, 张雪莲, 等. 2018. 畜禽粪便中兽用抗生素削减方法的研究进展[J]. 中国农业科学, 51(17): 3335-3352. (Cheng D M, Li Z J, Zhang X L,et al.2018. Removal of veterinary antibiotics in livestock and poultry manure: A review[J]. Scientia Agricultura Sinica, 51(17): 3335-3352.) [3] 冯瑶. 2017. 鸡粪堆肥过程中诺氟沙星削减规律及微生物分子生态学机制[D]. 硕士学位论文, 中国农业科学院, 导师: 李兆君. pp. 48-55. (Feng Y.2017. Microbial ecological mechanism for degradation of norfloxacin during chicken manure composting[D]. Thesis for M.S., Chinese Academy of Agricultural Sciences, Supervisor: Li Z J, pp. 48-55.) [4] 管荷兰, 于海凤, 王嘉宇. 2012. 氟喹诺酮类抗生素在土壤中的归趋及其生态毒性研究进展[J].生态学杂志, 31(12): 3228-3234. (Guan H L, Yu H F, Wang J Y.2012. Fate and ecological toxicity of fluoroquinolone antibiotics in soil:A review[J]. Chinese Journal of Ecology, 31(12): 3228-3234.) [5] 侯依林. 2021. 氟喹诺酮抗生素生物降解性理论增强分子修饰研究[D]. 硕士学位论文, 华北电力大学, 导师: 李鱼. pp. 2-38. (Hou Y L.2021. Molecular modification study on enhanced biodegradability of fluoroquinolone antibiotic in theory[D]. Thesis for M.S., North China Electric Power University, Supervisor: Li Y, pp. 2-38.) [6] 孟磊, 杨兵, 薛南冬, 等. 2015. 高温堆肥对鸡粪中氟喹诺酮类抗生素的去除[J]. 农业环境科学学报, 34(2): 377-383. (Meng L, Yang B, Xue N D, et al.2015. Effect of high temperature composting on removal of fluoroquinolones in chicken manures[J]. Journal of Agro-Environment Science, 34(2): 377-383.) [7] 王振方. 2021. 微藻胞外多糖在生物去除恩诺沙星中的作用研究[D]. 硕士学位论文, 上海海洋大学, 导师: 王丽卿, pp. 10-57. (Wang Z F.2021. Study on the role of microalgae exopolysaccharides in biological removal of enrofloxacin[D]. Thesis for M.S., Shanghai Ocean University, Supervisor: Wang L Q, pp. 10-57.) [8] 夏湘勤, 黄彩红, 席北斗, 等. 2019. 畜禽粪便中氟喹诺酮类抗生素的生物转化与机制研究进展[J]. 农业环境科学学报, 38(2): 257-267. (Xia X Q, Huang C H, Xi B D, et al.2019. Review on biotransformation and mechanism of fluoroquinolone antibiotics from livestock manure[J]. Journal of Agro-Environment Science, 38(2): 257-267.) [9] Alcock R E, Sweetman A, Jones K C.1999. Assessment of organic contaminant fate in waste water treatment plants. I: Selected compounds and physicochemical properties[J]. Chemosphere, 38(10): 2247-2262. [10] Amorim C L, Moreira I S, Maia A S, et al.2014. Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by Labrys portucalensis F11[J]. Applied Microbiology and Biotechnology, 98(7): 3181-3190. [11] Barra Caracciolo A, Topp E, Grenni P.2015. Pharmaceuticals in the environment: Biodegradation and effects on natural microbial communities. A review[J]. Pharmaceutical and Biomedical Analysis, 106: 25-36. [12] Ben Ayed A, Akrout I, Albert Q, et al.2022. Biotransformation of the fluoroquinolone, levofloxacin, by the white-rot fungus Coriolopsis gallica[J]. Fungi (Basel, Switzerland), 8(9): 965. [13] Bhatt S, Chatterjee S.2022. Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation - A comprehensive review[J]. Environmental Pollution, 315: 120440. [14] Bila D M, Dezotti M.2003. Fármacos no meio ambiente[J]. Química Nova, 26(4): 523-530. [15] Calza P, Medana C, Carbone F, et al.2008. Characterization of intermediate compounds formed upon photoinduced degradation of quinolones by high-performance liquid chromatography/high-resolution multiple-stage mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 22(10): 1533-1552. [16] Crini G, Lichtfouse E.2019. Advantages and disadvantages of techniques used for wastewater treatment[J]. Environmental Chemistry Letters, 17: 145-155. [17] Čvančarová M, Moeder M, Filipová A, et al.2015. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi - Metabolites, enzymes and residual antibacterial activity[J]. Chemosphere, 136: 311-320. [18] Cycoń M, Mrozik A, Piotrowska-Seget Z.2019. Antibiotics in the soil environment-degradation and their impact on microbial activity and diversity[J]. Frontiers in Microbiology, 10: 338. [19] Domagala J M.1994. Structure-activity and structure-side-effect relationships for the quinolone antibacterials[J]. Antimicrobial Chemotherapy, 33(4): 685-706. [20] Dorival-García N, Zafra-Gómez A, Navalón A, et al.2013. Removal and degradation characteristics of quinolone antibiotics in laboratory-scale activated sludge reactors under aerobic, nitrifying and anoxic conditions[J]. Environmental Management, 120: 75-83. [21] Ghosh G C, Okuda T, Yamashita N, et al.2009. Occurrence and elimination of antibiotics at four sewage treatment plants in Japan and their effects on bacterial ammonia oxidation[J]. Water Science and Technology, 59(4): 779-86. [22] Girardi C, Greve J, Lamshöft M, et al.2011. Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities[J]. Hazardous Materials, 198: 22-30. [23] Glick B R.1995. The enhancement of plant growth by free-living bacteria[J]. Canadian Journal of Microbiology, 41: 109-117. [24] Golet E M, Strehler A, Alder A C, et al.2002. Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction[J]. Analytical Chemistry, 74(21): 5455-5462. [25] Harms H, Schlosser D, Wick L Y.2011. Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals[J]. Nature Reviews Microbiology, 9(3): 177-192. [26] Harrabi M, Alexandrino D A M, Aloulou F, et al.2019. Biodegradation of oxytetracycline and enrofloxacin by autochthonous microbial communities from estuarine sediments[J]. Science of the Total Environment, 648: 962-972. [27] Hignite C, Azarnoff D L.1977. Drugs and drug metabolites as environmental contaminants: chlorophenoxyisobutyrate and salicyclic acid in sewage water effluent[J]. Life Sciences, 20(2): 337-341. [28] Hooper D C, Jacoby G A.2015. Mechanisms of drug resistance: Quinolone resistance[J]. Annals of the New York Academy of Sciences, 1354(1): 12-31. [29] Hu J, Wang W, Zhu Z, et al.2007. Quantitative structure-activity relationship model for prediction of genotoxic potential for quinolone antibacterials[J]. Environmental Science & Technology, 41(13): 4806-4812. [30] Jia Y, Khanal S K, Shu H, et al.2018. Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: Mechanism and pathways[J]. Water Research, 136: 64-74. [31] Kim D W, Heinze T M, Kim B S, et al.2011. Modification of norfloxacin by a Microbacterium sp. strain isolated from a wastewater treatment plant[J]. Applied and Environmental Microbiology, 77(17): 6100-6108. [32] Knapp J S, Bromley-Challoner K C A. 2003. Handbook of Water and Wastewater Microbiology[M]. Academic Press.. London. pp. 559-595. [33] Kümmerer K, al-Ahmad A, Mersch-Sundermann V.2000. Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test[J]. Chemosphere, 40(7): 701-710. [34] Liao X, Li B, Zou R, et al.2016. Biodegradation of antibiotic ciprofloxacin: Pathways, influential factors, and bacterial community structure[J]. Environmental Science and Pollution Research International, 23(8): 7911-7918. [35] Liu S C, Sun S J, Cui P, et al.2019. Molecular modification of fluoroquinolone-biodegrading enzymes based on molecular docking and homology modelling[J]. Environmental Research and Public Health, 16(18): 3407. [36] Liyanage G Y, Pathmalal M.2018. Removal of ciprofloxacin (CIP) by bacteria isolated from hospital effluent water and identification of degradation pathways[J]. International Journal of Medical, Pharmacy and Drug Research, 2(3): 37-47. [37] Manasfi R, Chiron S, Montemurro N,et al.2020. Biodegradation of fluoroquinolone antibiotics and the climbazole fungicide by Trichoderma species[J]. Environmental Science and Pollution Research International, 27(18): 23331-23341. [38] Martens R, Wetzstein H G, Zadrazil F, et al.1996. Degradation of the fluoroquinolone enrofloxacin by wood-rotting fungi[J]. Applied and Environmental Microbiology, 62(11): 4206-4209. [39] Migliore L, Cozzolino S, Fiori M.2003. Phytotoxicity to and uptake of enrofloxacin in crop plants[J]. Chemosphere, 52(7): 1233-1244. [40] Mir-Tutusaus J A, Baccar R, Caminal G, et al.2018. Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review[J]. Water Research, 138: 137-151. [41] Mori T, Ohno H, Ichinose H, et al.2021. White-rot fungus Phanerochaete chrysosporium metabolizes chloropyridinyl-type neonicotinoid insecticides by an N-dealkylation reaction catalyzed by two cytochrome P450s[J]. Hazardous Materials, 402: 123831. [42] Mulla S I, Hu A, Sun Q, et al.2018. Biodegradation of sulfamethoxazole in bacteria from three different origins[J]. Environmental Management, 206: 93-102. [43] Otero J L, Mestorino N, Errecalde J O.2001a. Enrofloxacin: A fluorquinolone of exclusive use in veterinary. Part I: chemical characteristics, mechanism of action, antimicrobial activity and bacterial resistance[J]. Analecta Veterinaria, 21(1): 31-41. [44] Otero J L, Mestorino N, Errecalde J O.2001b. Enrofloxacin: A fluorquinolone of exclusive use in veterinary. Part II: pharmacokinetic and toxicity[J]. Analecta Veterinaria, 21(1): 42-49. [45] Pan L J, Li J, Li C X, et al.2018. Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge[J]. Hazardous Materials, 343: 59-67. [46] Pereira L A, Jardim I C S F, Fostier A H, et al.2012. Occurrence, behavior and environmental impacts caused by the presence of veterinary antimicrobials in soils[J]. Química Nova, 35(1): 159-169. [47] Pham Thu D M, Ziora Zyta M, Blaskovich Mark A T.2019. Quinolone antibiotics[J]. Medicinal Chemistry Communications, 10(10): 1719-1739. [48] Prieto A, Möder M, Rodil R, et al.2011. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products[J]. Bioresource Technology, 02(23): 10987-10995. [49] Ramanan R, Kim B H, Cho D H, et al.2016. Algae-bacteria interactions: Evolution, ecology and emerging applications[J]. Biotechnology Advances, 34(1): 14-29. [50] Reis A C, Kolvenbach B A, Nunes O C, et al.2020. Biodegradation of antibiotics: The new resistance determinants - part II[J]. New Biotechnology, 54: 13-27. [51] Riaz L, Mahmood T, Yang Q, et al.2019. Bacteria-assisted removal of fluoroquinolones from wheat rhizospheres in an agricultural soil[J]. Chemosphere, 226: 8-16. [52] Ricky R, Shanthakumar S.2022. Phycoremediation integrated approach for the removal of pharmaceuticals and personal care products from wastewater - A review[J]. Environmental Management, 302(Pt A): 113998. [53] Ricky R, Shanthakumar S.2023. Removal of ciprofloxacin from aqueous media by Chlorella pyrenoidosa, Scenedesmus obliquus, and isolated Stichococcus bacillaris: A comparative study on toxicity, removal mechanism and biochemical composition[J]. Environmental Chemical Engineering, 11(3): 109990. [54] Robicsek A, Strahilevitz J, Jacoby G A, et al.2006. Fluoroquinolone-modifying enzyme: A new adaptation of a common aminoglycoside acetyltransferase[J]. Nature Medicine, 12(1): 83-88. [55] Rusch M, Kauschat A, Spielmeyer A, et al.2015. Biotransformation of the antibiotic danofloxacin by Xylaria longipes leads to an efficient reduction of its antibacterial activity[J]. Agricultural and Food Chemistry, 63(31): 6897-6904. [56] Rusch M, Spielmeyer A, Zorn H, et al.2019. Degradation and transformation of fluoroquinolones by microorganisms with special emphasis on ciprofloxacin[J]. Applied and Environmental Microbiology, 103(17): 6933-6948. [57] Shaker R A E, Nagy Y I, Adly M E, et al.2022. Acinetobacter baumannii, Klebsiella pneumoniae and Elizabethkingia miricola isolated from wastewater have biodegradable activity against fluoroquinolone[J]. World Journal of Microbiology and Biotechnology, 38(11): 187. [58] Slana M, Pahor V, Cvitkovič Maričič L, et al.2014. Excretion pattern of enrofloxacin after oral treatment of chicken broilers[J]. Veterinary Pharmacology and Therapeutics, 37(6): 611-614. [59] Sutherland D L, Ralph P J.2019. Microalgal bioremediation of emerging contaminants - Opportunities and challenges[J]. Water Research, 164: 114921. [60] Tran N H, Urase T, Ngo H H, et al.2013. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants[J]. Bioresource Technology, 146: 721-731. [61] Van Doorslaer X, Dewulf J, Van Langenhove H, et al.2014. Fluoroquinolone antibiotics: An emerging class of environmental micropollutants[J]. Science of the Total Environment, 500-501: 250-269. [62] Wang S, Li W, Liu L, et al.2022. Biodegradation of decabromodiphenyl ethane (DBDPE) by white-rot fungus Pleurotus ostreatus: Characteristics, mechanisms, and toxicological response[J]. Hazardous Materials, 424(Pt D): 127716. [63] Wang X, Zhang Z H, Yuan K K, et al.2023. Cytochrome P450-mediated co-metabolism of fluoroquinolones by Haematococcus lacustris for simultaneously promoting astaxanthin and lipid accumulation[J]. Chemical Engineering Journal, 465: 142770. [64] Wetzstein H G, Schmeer N, Karl W.1997. Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: Identification of metabolites[J]. Applied and Environmental Microbiology, 63(11): 4272-4281. [65] White L O, MacGowan A P, Lovering A M, et al.1987. A preliminary report on the pharmacokinetics of ofloxacin, desmethyl ofloxacin and ofloxacin N-oxide in patients with chronic renal failure[J]. Drugs, 34(Suppl 1): 56-61. [66] Woappi Y, Gabani P, Singh A, et al.2016. Antibiotrophs: The complexity of antibiotic-subsisting and antibiotic-resistant microorganisms[J]. Critical Reviews in Microbiology, 42(1): 17-30. [67] Wu M H, Que C J, Xu G, et al.2016. Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water[J]. Ecotoxicology and Environmental Safety, 132: 132-139. [68] Xiong Q, Hu L X, Liu Y S, et al.2021. Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems[J]. Environment International, 155: 106594. [69] Xiong J Q, Kurade M B, Jeon B H.2017a. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris[J]. Chemical Engineering, 313: 1251-1257. [70] Xiong J Q, Kurade M B, Kim J R, et al.2017b. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana[J]. Hazardous Materials, 323(Pt A): 212-219. [71] Yang Y, Wang Z, Xie S.2014. Aerobic biodegradation of bisphenol A in river sediment and associated bacterial community change[J]. Science of the Total Environment, 470-471: 1184-1188. [72] Zhao L, Dong Y H, Wang H.2010. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China[J]. Science of the Total Environment, 408(5): 1069-1075. |
|
|
|