|
|
Research Progress on Regulation of Epididymis Biological Function by miRNA in Livestock and Poultry |
GUO Shi-Hao1, CAO Jun-Yi1, GAI Kai1, CONG Bai-Lin1, LIU Yi-Zheng1, XING Kai1, CHEN Li2, SHENG Xi-Hui1,* |
1 College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206; 2 College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206 |
|
|
Abstract The reproductive performance and semen quality of male livestock and poultry are of great significance to animal husbandry, and are closely related to the conception rate, litter size and survival rate of female livestock and poultry. As an important reproductive organ, the epididymis is responsible for sperm concentration, maturation (including sperm vitality acquisition and fertilization ability), protection and storage. MicroRNA (miRNA) is a kind of non coding single stranded RNA molecule with a length of about 22 nt, which is closely related to a series of physiological processes in epididymis of livestock and poultry. miRNA participates in regulating different biological processes, including sperm vitality, sperm maturation, sperm cell apoptosis, ion channel activity, copper ion detoxification, etc. This paper summarized the similarities and differences in the structure and function of epididymis between mammals and poultry, reviewed the research progress of miRNA in regulating sperm motility, maturation, ion transport and other biological functions in epididymis of livestock and poultry. This review provides reference for the research of miRNA regulation mechanism in epididymis and genetic breeding of breeding male reproductive performance.
|
Received: 31 August 2022
|
|
Corresponding Authors:
* shengxh03@163.com
|
|
|
|
[1] 姚晓磊, 孟繁星, 王书婷, 等. 2019. GALNTL5 基因在不同月龄湖羊附睾中的表达模式及其 miRNA 的预测[J]. 南京农业大学学报, 42(3): 519-525. (Yao X L, Meng F X, Wang S T, et al.2019. Expression pattern and miRNA prediction of GALNTL5 gene in epididymis of different month old Hu Sheep[J]. Journal of Nanjing Agricultural University, 42(3): 519-525.) [2] Adams B D, Kasinski A L, Slack F J.2014.Aberrant regulation and function of microRNAs in cancer[J]. Current Biology, 24(16): R762-R776. [3] Ahammad M U, Nishino C, Tatemoto H, et al.2011a. Maturational changes in motility, acrosomal proteolytic activity, and penetrability of the inner perivitelline layer of fowl sperm, during their passage through the male genital tract[J]. Theriogenology, 76(6): 1100-1109. [4] Ahammad M U, Nishino C, Tatemoto H, et al.2011b. Maturational changes in the survivability and fertility of fowl sperm during their passage through the male reproductive tract[J]. Animal Reproduction Science, 128(1-4): 129-136. [5] Aire T A, Josling D.2000. Ultrastructural study of the luminal surface of the ducts of the epididymis of gallinaceous birds[J]. The Onderstepoort Journal of Veterinary Research, 67(3): 191. [6] Aitken R J, Findlay J K, Hutt K J, et al.2011. Apoptosis in the germ line[J]. Reproduction, 141(2): 139. [7] Ambros V.2003. MicroRNA pathways in flies and worms: Growth, death, fat, stress, and timing[J]. Cell, 113(6): 673-676. [8] Barceló M, Mata A, Bassas L, et al.2018. Exosomal microRNAs in seminal plasma are markers of the origin of azoospermia and can predict the presence of sperm in testicular tissue[J]. Human Reproduction, 33(6): 1087-1098. [9] Belleannée C, Calvo E, Thimon V, et al.2012a. Role of microRNAs in controlling gene expression in different segments of the human epididymis[J]. PLOS ONE, 7(4): e34996. [10] Belleannée C, Legare C, Calvo E, et al.2013. microRNA signature is altered in both human epididymis and seminal microvesicles following vasectomy[J]. Human Reproduction, 28(6): 1455-1467. [11] Belleannée C, Thimon V, Sullivan R.2012b. Region-specific gene expression in the epididymis[J]. Cell and Tissue Research, 349(3): 717-731. [12] Browne J A, Yang R, Leir S H, et al.2016. Expression profiles of human epididymis epithelial cells reveal the functional diversity of caput, corpus and cauda regions[J]. MHR: Basic Science of Reproductive Medicine, 22(2): 69-82. [13] Capra E, Turri F, Lazzari B, et al.2017. Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between High-and Low-motile sperm populations[J]. BMC Genomics, 18(1): 1-12. [14] Chang Y, Dai D, Li Y, et al.2016. Differences in the expression of microRNAs and their predicted gene targets between cauda epididymal and ejaculated boar sperm[J]. Theriogenology, 86(9): 2162-2171. [15] Cornwall G A.2009. New insights into epididymal biology and function[J]. Human Reproduction Update, 15(2): 213-227. [16] Croce C M, Calin G A.2005. miRNAs, cancer, and stem cell division[J]. Cell, 122(1): 6-7. [17] De Lima A O, Afonso J, Edson J, et al.2021. Network analyses predict small RNAs that might modulate gene expression in the testis and epididymis of Bos indicus Bulls[J]. Frontiers in Genetics, 12: 530. [18] Dündar M, Koçak I, Çulhaci N, et al.2005. Determination of apoptosis through bax expression in cryptorchid testis: An Experimental study[J]. Pathology & Oncology Research, 11(3): 170-173. [19] Elfgen V, Mietens A, Mewe M, et al.2018. Contractility of the epididymal duct: function, regulation and potential drug effects[J]. Reproduction, 156(4): R125-R141. [20] Hong S H, Goh S H, Lee S J, et al.2013. Upregulation of adenylate cyclase 3 (ADCY3) increases the tumorigenic potential of cells by activating the CREB pathway[J]. Oncotarget, 4(10): 1791-1803. [21] Huang J, Chen S, Zhang J J, et al.2013. Crystal structure of oligomeric β1-adrenergic G protein-coupled receptors in ligand-free basal state[J]. Nature Structural & Molecular Biology, 20(4): 419-425. [22] Jacobo P, Guazzone V A, Theas M S, et al.2011. Testicular autoimmunity[J]. Autoimmunity Reviews, 10(4): 201-204. [23] James E R, Carrell D T, Aston K I, et al.2020.The role of the epididymis and the contribution of epididymosomes to mammalian reproduction[J]. International Journal of Molecular Sciences, 21(15): 5377. [24] Ma W, Xie S, Ni M, et al.2012. MicroRNA-29a inhibited epididymal epithelial cell proliferation by targeting nuclear autoantigenic sperm protein (NASP)[J]. Journal of Biological Chemistry, 287(13): 10189-10199. [25] Martinez C A, Roca J, Alvarez-Rodriguez M, et al.2022. miRNA-profiling in ejaculated and epididymal pig spermatozoa and their relation to fertility after artificial insemination[J]. Biology, 11(2): 236. [26] Mirnamniha M, Faroughi F, Tahmasbpour E, et al.2019. An overview on role of some trace elements in human reproductive health, sperm function and fertilization process[J]. Reviews on Environmental Health, 34(4): 339-348. [27] Nagata S.1997. Apoptosis by death factor[J]. Cell, 88(3): 355-365. [28] Nixon B, Ewen K A, Krivanek K M, et al.2014. Post-testicular sperm maturation and identification of an epididymal protein in the Japanese quail (Coturnix coturnix japonica)[J]. Reproduction, 147(3): 265-277. [29] Nixon B, Stanger S J, Mihalas B P, et al.2015. The microRNA signature of mouse spermatozoa is substantially modified during epididymal maturation[J]. Biology of Reproduction, 93(4): 91. [30] Ran M L, Dong L H, Weng B, et al.2018. miR-362 regulates the proliferation and apoptosis of porcine immature Sertoli cells through targeting the ZNF644 gene[J]. Hereditas, 40(7): 572-584. [31] Razi M, Hassanzadeh S H, Najafi G H R, et al.2010. Histological and anatomical study of the White Rooster of testis, epididymis and ductus deferens[J]. Iranian Journal of Veterinary Medicine, 4(4): 229-236. [32] Robaire B, Hinton B T, Orgebin-Crist M C. 2006 Chapter 22 - The Epididymis[M]//, Neill J D (eds.). Knobil and Neill's Physiology of Reproduction (Third Edition). Academic Press, pp. 1071-1148. [33] Schulkens I A, Castricum K C M, Weijers E M, et al.2014. Expression, regulation and function of human metallothioneins in endothelial cells[J]. Journal of Vascular Research, 51(3): 231-238. [34] Sood P, Krek A, Zavolan M, et al.2006. Cell-type-specific signatures of microRNAs on target mRNA expression[J]. Proceedings of the National Academy of Sciences of the USA, 103(8): 2746-2751. [35] Stegh A H, Kim H, Bachoo R M, et al.2007. Bcl2L12 inhibits post-mitochondrial apoptosis signaling in glioblastoma[J]. Genes & Development, 21(1): 98-111. [36] Sullivan R, Mieusset R.2016. The human epididymis: Its function in sperm maturation[J]. Human Reproduction Update, 22(5): 574-587. [37] Sullivan R, Saez F.2013. Epididymosomes, prostasomes, and liposomes: Their roles in mammalian male reproductive physiology[J]. Reproduction, 146(1): R21-R35. [38] Sutherland D E K, Stillman M J.2011. The “magic numbers” of metallothionein[J]. Metallomics, 3(5): 444-463. [39] Tvrda E, Peer R, Sikka S C, et al.2015. Iron and copper in male reproduction: a double-edged sword[J]. Journal of Assisted Reproduction and Genetics, 32(1): 3-16. [40] Wang C, Hussain Solangi T, Wang H, et al.2022. High‐throughput sequencing reveals differential expression of miRNAs in yak and cattleyak epididymis[J]. Reproduction in Domestic Animals, 57(2): 125-140. [41] Wang S, Tang Y, Cui H, et al.2011. Let-7/miR-98 regulate Fas and Fas-mediated apoptosis[J]. Genes & Immunity, 12(2): 149-154. [42] Wang W, Liang K, Chang Y, et al.2020. miR-26a is involved in glycometabolism and affects boar sperm viability by targeting PDHX[J]. Cells, 9(1): 146. [43] Wong D L, Merrifield-MacRae M E, Stillman M J.2017. Lead (II) binding in metallothioneins[J]. Metal Ions in Life Sciences, DOI:10.1515/9783110434330-009. [44] Wu C, Wang C, Zhai B, et al.2021. Study of microRNA expression profile in different regions of ram epididymis[J]. Reproduction in Domestic Animals, 56(9): 1209-1219. [45] Xing K, Chen Y, Wang L, et al.2022. Epididymal mRNA and miRNA transcriptome analyses reveal important genes and miRNAs related to sperm motility in roosters[J]. Poultry Science, 101(1): 101558. [46] Yao C, Liu Y, Sun M, et al.2015. MicroRNAs and DNA methylation as epigenetic regulators of mitosis, meiosis and spermiogenesis[J]. Reproduction, 150(1): R25-R34. [47] Yao X, Yang H, Zhang Y, et al.2017. Characterization of GALNTL5 gene sequence and expression in ovine testes and sperm[J]. Theriogenology, 95: 54-61. [48] Zeng C, Tang K, He L, et al.2014. Effects of glycerol on apoptotic signaling pathways during boar spermatozoa cryopreservation[J]. Cryobiology, 68(3): 395-404. [49] Zhang X D, Zhang Y H, Ling Y H, et al.2013. Characterization and differential expression of microRNAs in the ovaries of pregnant and non-pregnant goats (Capra hircus)[J]. BMC Genomics, 14(1): 1-10. [50] Zhao W, Hussain Solangi T, Wu Y, et al.2021. Comparative rna‐seq analysis of region‐specific miRNA expression in the epididymis of cattleyak[J]. Reproduction in Domestic Animals, 56(4): 555-576. |
|
|
|