|
|
Effects of Litter Extracts from Moso Bamboo (Phyllostachys edulis) and Broadleaved Forests on Soil Microbes and Nitrogen Mineralization |
WANG Lan-Ge1, ZHANG Qian-Qian1, ZHAO Ming-Shui2, MIAO Dan-Ni1, LI Yong-Fu1, TENG Qiu-Mei1, LI Yong-Chun1* |
1 College of Environmental and Resources, Zhejiang A&F University/Zhejiang Provincial Key Laboratory of Carbon Cycle in Forest Ecosystems and Carbon Sequestration/State Key Laboratory of Subtropical Silviculture, Hangzhou 311300, China; 2 Zhejiang Tianmu Mountain National Nature Reserve Administration, Hangzhou 311312, China |
|
|
Abstract Soil nutrient cycling and plant growth are significantly affected by rainfall leaching in different forest stands in subtropical regions. This study aimed to investigate how the litter under Moso bamboo (Phyllostachys edulis) invasion into broadleaved forest affected the soil nitrogen mineralization through the release of water-soluble carbon and nitrogen from litter. The incubation experiment in broadleaved forest soil for 42 d was conducted by adding different concentrations of the litter extracts from invaded Moso bamboo and uninvaded broadleaved forests. This study investigated the effects of litter extracts from invasive and non- invasive forests on the soil net nitrogen mineralization (ammonification rate, nitrification rate, and nitrogen mineralization rate), hydrolase enzyme (β -glucosidase enzyme, β -1, 4-N-acetylglucosidase, and leucine aminopeptidase) activities, and the abundance of bacteria and fungi, and soil pH. The results showed that the net ammonification rate (9.2%~52.3%), net nitrification rate (8.4%~138.9%), net nitrogen mineralization rate (8.7%~37.9%) were significantly increased by adding the litter extract of Moso bamboo forest compared with the control (P<0.05). The net ammonification rate (6.1%~92.1%), net nitrification rate (13.8%~279.7%), and net mineralization rate (15.1%~65.4%) were significantly decreased by adding a litter-eluting extract of the broadleaved forest (P<0.05). The addition of the litter extracts from Moso bamboo were significantly decreased soil pH (P<0.05), but significantly increased the fungal-to-bacterial ratio (P<0.05), and significantly promoted the enzyme activities related to nitrogen mineralizations, e. g. β -1, 4-N- acetaminoglycosidase and leucine aminopeptidase (P<0.05). The correlation analysis showed that the nitrogen mineralization rate was affected by the soil pH, β -glucosidase, β -1, 4-N-acetylglucosidase, leucine aminopeptidase, C/N ratio of litter extracts and soil fungal-to-bacterial ratio. Thus, the litter extracts from invasive plant bamboo significantly increased the soil nitrogen mineralization rate, which will result in a conducive environment for bamboo growth and assured the availability of soil nutrients to promote its invasion into the native broadleaved forest. This study provides an important theoretical basis for understanding the plant-soil interaction during bamboo invasion into natural forest.
|
Received: 22 February 2022
|
|
Corresponding Authors:
*ycli@zafu.edu.cn
|
|
|
|
[1] 鲍士旦. 2000. 土壤农化分析[M]. 中国农业出版社, 北京. pp. 56-58, 81-83, 106-108. (Bao S D. 2000. Soil Agrochemical Analysis[M]. China Agriculture Press, Beijing. pp. 56-58, 81-83, 106-108.) [2] 陈冠陶, 李顺, 彭天驰, 等. 2018. 根系隔离和氮添加对湿性常绿阔叶林土壤碳氮组分的影响[J]. 应用与环境生物学报, 24(01): 125-131. (Chen G T, Li S, Peng T C, et al. 2018. Effect of root isolation and nitrogen addition on soil carbon and nitrogen component in a moist evergreen broad-leaved forest[J]. Chinese Journal Applied & Environmental Biology, 24(01): 125-131.) [3] 陈娟, 白尚斌, 周国模, 等. 2014. 毛竹浸提液对苦槠幼苗生长的化感效应[J]. 生态学报, 34(16): 4499-4507. (Chen J, Bai S B, Zhou G M, et al. 2014. Allelopathic effects of Phyllostachys edulis extracts on Castanopsis sclerophyl- la[J]. Acta Ecologica Sinica, 34(16): 4499-4507.) [4] 党亚爱, 王立青, 张敏. 2015. 黄土高原南北主要类型土壤氮组分相关关系研究[J]. 土壤, 47(03): 490-495. (Dang Y A, Wang L Q, Zhang M. 2015. Relationship of components of soil nitrogen for typical soils from north to south on the Loess Plateau[J]. Soils, 47(03): 490-495.) [5] 傅民杰, 王传宽, 王颖, 等. 2009. 四种温带森林土壤氮矿化与硝化时空格局[J]. 生态学报, 29(07): 3747-3758. (Fu M J, Wang C K, Wang Y, et al. 2009. Temporal and spatial patterns of soil nitrogen mineralization and nitrification in four temperate forests[J]. Acta Ecologica Sinica, 29(07): 3747-3758.) [6] 郭志明, 张心昱, 李丹丹, 等. 2017. 温带森林不同海拔土壤有机碳及相关胞外酶活性特征[J]. 应用生态学报, 28(09): 2888-2896. (Guo Z M, Zhang X Y, Li D D, et al. 2017. Characteristics of soil organic carbon and related exo-enzyme activities at different altitudes in temperate forests[J]. Chinese Journal of Applied Ecology, 28(09): 2888-2896.) [7] 侯玉平, 柳林, 王信, 等. 2013. 外来植物火炬树水浸液对土壤微生态系统的化感作用[J]. 生态学报, 33(13): 4041-4049. (Hou Y P, Liu L, Wang X, et al. 2013. Allelopathic effects of aqueous extract of exotic plant Rhus typhina L. on soil micro-ecosystem[J]. Acta Ecologica Sinica, 33(13): 4041-4049.) [8] 李伟成, 盛海燕, 陈伟杰, 等. 2018. 毛竹入侵马尾松林的土壤菌群多样性变化[J]. 应用生态学报, 29(12): 3969-3976. (Li W C, Sheng H Y, Chen W J, et al. 2018. Variation of soil bacterial diversity after the invasion of Phyl- lostachys edulis into Pinus massoniana forest[J]. The Journal of Applied Ecology, 29(12): 3969-3976.) [9] 李晓波, 张旭东, 马倩倩, 等. 2021. 15N-氨基糖探针技术新用法: 区分和量化土壤真菌和细菌固持无机氮速率[J]. 土壤通报, 52(06): 1473-1478. (Li X B, Zhang X D, Ma Q Q, et al. 2021. Disentangling immobilization of inorganic nitrogen by fungi and bacteria in soil with adapting a novel amino sugar-based stable isotope probing approach[J]. Chinese Journal of Soil Science, 52(06): 1473-1478.) [10] 李欣欣, 赖金莉, 岳建华, 等. 2018. 毛竹各器官和根际土浸提液对杉木种子萌发的化感作用[J]. 生态学报, 38(22): 8149-8157. (Li X X, Lai J L, Yue J H, et al. 2018. Allelopathy of Phyllostachys pubescens extract on the seed germination of Chinese fir[J]. Acta Ecologica Sinica, 38(22): 8149-8157.) [11] 李永春, 梁雪, 李永夫, 等. 2016. 毛竹入侵阔叶林对土壤真菌群落的影响[J]. 应用生态学报, 27(2): 585-592. (Li Y C, Liang X, Li Y F, et al. 2016. Effects of Phyllo- stachys edulis invasion of native broadleaf forest on soil fungal community[J]. Chinese Journal of Applied Ecology, 27(2): 585-592.) [12] 刘欣, 黄运湘, 袁红, 等. 2016. 植被类型与坡位对喀斯特土壤氮转化速率的影响[J]. 生态学报, 36(09): 2578-2587. (Liu X, Huang Y X, Yuan H, et al. 2016. Effects of vegetation type and slope position on soil nitrogen transformation rate in Karst regions[J]. Acta Ecologica Sinica, 36(09): 2578-2587.) [13] 龙健, 张明江, 赵畅, 等. 2019. 土壤动物对茂兰喀斯特森林凋落物分解过程中元素释放的作用[J]. 生态学杂志, 38(09): 2671-2682. (Long J, Zhang M J, Zhao C, et al. 2019. Effects of soil fauna on element release during litter decomposition in a Maolan Karst forest[J]. Chinese Journal of Ecology, 38(09): 2671-2682.) [14] 马云华, 王秀峰, 魏珉, 等. 2005. 黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响[J]. 应用生态学报, 16(11): 2149-2153. (Ma Y H, Wang X, Wei M, et al. 2005. Accumulation of phenolic acids in continuously cropped cucumber soil and their effects on soil microbes and enzyme activities[J]. The Journal of Applied Ecology, 16(11): 2149-2153). [15] 倪壮, 聂彦霞, 欧阳胜男, 等. 2018. 氮添加对南亚热带常绿阔叶林土壤微生物群落结构的影响[J]. 生态学杂志, 37(11): 3202-3209. (Ni Z, Nie Y X, Ouyang S N, et al. 2018. Effects of nitrogen addition on soil microbial community structure in a subtropical ever-green broadleaved forest[J]. Chinese Journal of Ecology, 37(11): 3202-3209.) [16] 王涵, 王果, 黄颖颖, 等. 2008. pH 变化对酸性土壤酶活性的影响[J]. 生态环境, 17(06): 2401-2406. (Wang H, Wang G, Huang Y Y, et al. 2008. The effects of pH change on the activities of enzymes in an acid soil[J]. Ecology and Environment, 17(06): 2401-2406.) [17] 王兴萌, 陈志豪, 李永春, 等. 2019. 氮素形态及配比对毛竹和青冈实生苗生长特性的影响[J]. 生态学杂志, 38(09): 2655-2661. (Wang X M, Chen Z H, Li Y C, et al. 2019. Effects of different nitrogen forms and ratios on the growth of Phyllostachys edulis and Quercus glauca seedlings[J]. Chinese Journal of Ecology, 38(09): 2655-2661.) [18] 杨万勤, 王开运. 2004. 森林土壤酶的研究进展[J]. 林业科学, 40(02): 152-159. (Yang W Q, Wang K Y. 2004. Advances in forest soil enzymology[J]. Scientia Silvae Sinicae, 40(02): 152-159.) [19] 袁光林, 马瑞霞, 刘秀芬, 等. 1998. 化感物质对土壤脲酶活性的影响[J]. 环境科学, 19(02): 57-59. (Yuan G L, Ma R X, Liu X F, et al. 1998. Effects of allelochemicals on soil urease activity[J]. Environmental Science, 19(02): 57-59.) [20] 袁吉, 黄美玉, 麦淑媛, 等. 2019. 华西雨屏区麻栎人工混交林凋落物水溶性碳、氮、磷含量及化学计量比随物候节律的变化特征[J]. 生态学杂志, 38(02): 376-383. (Yuan J, Huang M Y, Mai S Y, et al. 2019. Changes in water- soluble carbon, nitrogen and phosphorus in fresh litter of Quercus acutissima mixed plantation with phenological rhythms in rainy zone of west China[J]. Chinese Journal of Ecology, 38(02): 376-383.) [21] 张天瑞, 皇甫超河, 白小明, 等. 2010. 黄顶菊入侵对土壤养分和酶活性的影响[J]. 生态学杂志, 29(07): 1353-1358. (Zhang T R, Huangpu C H, Bai X M, et al. 2010. Effects of Flaveria bidentis invasion on soil nutrient contents and enzyme activities[J]. Chinese Journal of Ecology, 29(07): 1353-1358.) [22] 张玉玲, 陈温福, 虞娜, 等. 2012. 长期不同土地利用方式对潮棕壤有机氮组分及剖面分布的影响[J]. 土壤学报, 49(04): 740-747. (Zhang Y L, Chen W F, Yu N, et al. 2012. Effects of long-term land use on fractionation and preofile distribution of organic nitrogen composition in aquic brown soil[J]. Acta Pedologica Sinica, 49(04): 740-747.) [23] 张政, 蔡小真, 唐偲頔, 等. 2017. 可溶性有机质输入对杉木人工林表层土壤有机碳矿化的激发效应[J]. 生态学报, 37(22): 7660-7667. (Zhang Z, Cai X Z, Tang C D, et al. 2017. Priming effect of dissolved organic matter in the surface soil of a Cunninghamia lanceolata plantation[J]. Acta Ecologica Sinica, 37(22): 7660-7667.) [24] 朱海云, 马瑜, 柯杨, 等. 2022. 不同年龄时期石榴园土壤养分、微生物量及酶活性[J]. 土壤通报, 53(03): 588-595. (Zhu H Y, Ma Y, Ke Y, et al. 2022. Soil nutrients, microbial quantities and enzyme activities in the pomegranate orchards with different age stages[J]. Chinese Journal of Soil Science, 53(03): 588-595.) [25] Chabrerie O, Laval K, Puget P, et al. 2003. Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France[J]. Applied Soil Ecology, 24(1): 43-56. [26] Chen B M, Peng S L, Ni G Y. 2009. Effects of the invasive plant Mikania micrantha H. B. K. on soil nitrogen availability through allelopathy in south China[J]. Biological Invasions, 11(6): 1291-1299. [27] Chen Z H, Li Y C, Chang S X, et al. 2021. Linking enhanced soil nitrogen mineralization to increased fungal decomposition capacity with moso bamboo invasion of broadleaf forests[J]. Science of The Total Environment, 771: 144779. [28] Dorning M, Cipollini D. 2006. Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects[J]. Plant Ecology, 184(2): 287-296. [29] Ehrenfeld J G. 2003. Effects of exotic plant invasions on soil nutrient cycling processes[J]. Ecosystems, 6(6): 503-523. [30] Fox C A, Macdonald K B. 2003. Challenges related to soil biodiversity research in agroecosystems - issues within the context of scale of observation[J]. Canadian Journal of Soil Science, 83: 231-244. [31] Fraterrigo J M, Strickland M S, Keiser A D, et al. 2011. Nitrogen uptake and preference in a forest understory following invasion by an exotic grass[J]. Oecologia, 167(3): 781-791. [32] German D P, Weintraub M N, Grandy A S, et al. 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies[J]. Soil Biology and Biochemistry, 43(7):1387-1397. [33] Hoogmoed M, Cunningham S C, Baker P J, et al. 2014. Is there more soil carbon under nitrogen-fixing trees than under non-nitrogen-fixing trees in mixed-species restoration plantings?[J]. Agriculture, Ecosystems & Environment, 188: 80-84. [34] Kourtev P S, Ehrenfeld J G, Huang W Z. 2002. Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey[J]. Soil Biology and Biochemistry, 34(9): 1207-1218. [35] Kuyper T W. 2005. Book Review: B. Berg and C. McClaugherty (2003). Plant litter-decomposition, humus formation, carbon sequestration[J]. Plant Ecology, 180(2): 269-271. [36] Lejon D P H, Chaussod R, Ranger J, et al. 2005. Microbial community structure and density under different tree species in an acid forest soil (Morvan, France)[J]. Microbial Ecology, 50(4): 614-625. [37] Liao C, Peng R, Luo Y, et al. 2008. Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis[J]. New Phytologist, 177(3): 706-714. [38] Liu Y W, Wei D, Zhao J, et al. 2021. Nitrogen addition alters CN cycling in alpine rangelands: Evidence from a 4- year in situ field experiment[J]. CATENA, 203(1): 105366. [39] Sinsabaugh R L. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil[J]. Soil Biology & Biochemistry, 42(3): 391-404. [40] Song Q N, Ouyang M, Yang Q P, et al. 2016. Degradation of litter quality and decline of soil nitrogen mineralization after moso bamboo (Phyllostachys pubscens) expansion to neighboring broadleaved forest in subtropical China[J]. Plant and Soil, 404(1-2): 113-124. [41] Wang C, Xiao H, Liu J, et al. 2015. Insights into ecological effects of invasive plants on soil nitrogen cycles[J]. American Journal of Plant Sciences, 6(1): 34-46. [42] Xu Q F, Jiang P K, Wu J S, et al. 2015. Bamboo invasion of native broadleaf forest modified soil microbial communities and diversity[J]. Biological Invasions, 17(1): 433-444. [43] Zhou Y, Staver A C. 2019. Enhanced activity of soil nutrient- releasing enzymes after plant invasion: A meta-analysis[J]. Ecology, 100(11): e02830. |
|
|
|