|
|
Effects of Novel-miR-23900 on Proliferation and Apoptosis of Sheep (Ovis aries) Ovarian Follicular Granulosa Cells |
ZHANG Pei-Ying, WANG Wen-Jun, SONG Peng-Yan, CHEN Xiao-Yong, YUE Qiao-Xian, ZHOU Rong-Yan* |
College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China |
|
|
Abstract Granulosa cells are the key factor affecting the development of ovarian follicles. miRNA affects the ovarian follicular development by controlling the proliferation and apoptosis of follicular granulosa cells. This study aimed to reveal the role of novel-miR-23900 in sheep (Ovis aries) follicular granulosa cells. First, isolated and cultured sheep follicular granulosa cells were treated with follicle-stimulating hormone (FSH), qPCR results showed that the expression levels of CDK2, CDK4, CCND2 and Bcl2 genes significantly increased (P<0.01), the Bax and Casp3 gene expression and novel-miR-23900 level significantly decreased (P<0.01). Then, novel-miR-23900 mimic and mimic negative control (NC) were further transfected into granulosa cells, CCK-8 was used to detect cell proliferation and mitochondrial membrane potential detection kit (JC-1) was used to detect cell apoptosis, and qPCR was used to detect the expression changes of genes related to proliferation and apoptosis. The results showed that the proliferation ability of granulosa cells significantly decreased at 72 and 96 h with transfection of novel-miR-23900 mimic (P<0.05), and extremely significantly decreased (P<0.01) at 48 h. The expression of proliferation-related genes CDK1, CDK4, CCNB1 and CCNB2 extremely significantly decreased (P<0.01), and the expression of CDK2, CCND1 and CCND2 significantly decreased (P<0.05). Apoptosis of granulosa cells was promoted by 48 h transfection with novel-miR-23900 mimic, the expression of apoptosis-related gene Bcl2 significantly decreased (P<0.01), the Casp3 gene expression significantly increased (P<0.01), and Bax gene expression significantly increased (P<0.05). In conclusion, novel-miR-23900 inhibited proliferation and promoted apoptosis in sheep granulosa cells. This study provides basic data for exploring the effects of novel-miR-23900 on sheep granulosa cells and its role in ovary.
|
Received: 25 May 2022
|
|
Corresponding Authors:
* rongyanzhou@126.com
|
|
|
|
[1] 蔡循, 陈国强, 陈竺, 等. 2001. 线粒体跨膜电位与细胞凋亡[J]. 生物化学与生物物理进展, 28(01): 3-6. (Cai X, Chen G Q, Chen Z, et al.2001. Mitochondrial transmembrane potential and cell apoptosis[J]. Progress in Biochemistry and Biophysics, 28(01): 3-6.) [2] 蒋秀敏, 刘雨生, 许波. 2015. miR-483-5p通过靶基因ERK1调控人类颗粒细胞增殖凋亡平衡[J]. 安徽医科大学学报, 50(11): 1639-1644. (Jiang X M, Lu Y S, Xu B.2015. Characterization of miR-483-5p and target gene ERK1 in regulation of proliferation- apoptosis balance of human granulosa cell[J]. Acta Universitatis Medicinalis Anhui, 50(11): 1639-1644.) [3] 李振淼, 李文. 2019. miR-383通过下调细胞周期相关蛋白的表达抑制小鼠卵泡颗粒细胞的增殖[J]. 细胞与分子免疫学杂志, 35(06): 518-525. (Li Z M, Li W.2019. miR-383 inhibits the proliferation of granulosa cells by down-regulating of cycle-related proteins in mice[J]. Chinese Journal of Cellular and Molecular Immunology, 35(06): 518-525.) [4] 李曼曼, 于昊, 薛洋, 等. 2020. 生殖激素对山羊颗粒细胞孕酮合成的影响[J]. 中国兽医学报, 40(08): 1652-1659. (Li M M, Yu H, Xue Y, et al.2020. Effects of reproductive hormones on progesterone synthesis in granulosa cells of goat[J]. Chinese Journal of Veterinary Science, 40(8): 1652-1659.) [5] 刘春洁, 王兆琛, 杜炜, 等. 2020. FSH通过AKT/FOXO1通路调控绵羊卵泡颗粒细胞增殖的研究[J]. 中国农业大学学报, 25(03): 45-51. (Liu C J, Wang Z C, Du W, et al.2020. Follicle-stimulating hormone regulating the proliferation of ovine follicular granulosa cells through AKT/FOXO1 pathway[J]. Journal of China Agricultural University, 25(03): 45-51.) [6] 朱小兰, 陈小芳, 许文林. 2016. miR-34a调节人卵巢颗粒细胞凋亡[J]. 江苏大学学报(医学版), 26(06): 470-474. (Zhu X L, Chen X F, Xu W L.2016. miR-34a regulates apoptosis of human ovarian granulosa cells[J]. Journal of Jiangsu University (Medicine Edition), 26(06): 470-474.) [7] 孙耀华. 2019. 提高母羊产羔数的举措[J]. 浙江畜牧兽医, 44(01): 45. (Sun Y H.2019. Initiatives to increase the number of ewes lambing[J]. Zhejiang Journal Animal Science and Veterinary, 44(01): 45.) [8] Algeciras-Schimnich A, Barnhart B C, Peter M E.2002. Apoptosis-independent functions of killer caspases[J]. Current Opinion in Cell Biology, 14(6): 721-726. [9] Bancsi L F, Broekmans F J, Mol B W, et al.2003. Performance of basal follicle-stimulating hormone in the prediction of poor ovarian response and failure to become pregnant after in vitro fertilization: A meta-analysis[J]. Fertility and Sterility, 79(5): 1091-1100. [10] Baxa D M, Luo X X, Yoshimura F K.2005. Genistein induces apoptosis in T lymphoma cells via mitochondrial damage[J]. Nutrition and Cancer, 51(1): 93-101. [11] Cai G, Ma X, Chen B, et al.2017. MicroRNA-145 negatively regulates cell proliferation through targeting IRS1 in isolated ovarian granulosa cells from patients with polycystic ovary syndrome[J]. Reproductive Sciences, 24(6): 902-910. [12] Communal C, Sumandea M, Tombe P D, et al.2002. Functional consequences of caspase activation in cardiac myocytes[J]. Proceedings of the National Academy of Sciences of the USA, 99(9): 6252-6252. [13] Choi J Y, Jo M W, Lee E Y, et al.2010. The role of autophagy in follicular development and atresia in rat granulosa cells[J]. Fertility & Sterility, 93(8): 2532-2537. [14] Clark B J, Stocco D M.2009. Expression of the steroidogenic acute regulatory (StAR) protein: A novel LH-induced mitochondrial protein required for the acute regulation of steroidogenesis in mouse leydig tumor cells[J]. Endocrine Research, 21(1-2): 251-257. [15] Cui Z, Shen X, Zhang X, et al.2021. A functional polymorphism of inhibin alpha subunit at miR-181b-1-3p-binding site regulates proliferation and apoptosis of chicken ovarian granular cells[J]. Cell and Tissue Research, 384(2): 1-16. [16] Du X, Zhang L, Li X, et al.2016. TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis[J]. Cell Death & Disease, 7(11): e2476. [17] Epping J J.2001. Oocyte control of ovarian follicular development and function in mammals[J]. Reproduction, 122(6): 829-838. [18] Han Y Y, Xia G L, Tsang B K.2013. Regulation of cyclin D2 expression and degradation by follicle-stimulating hormone during rat granulosa cell proliferation in vitro[J]. Biology of Reproduction, 88(3): 57. [19] Hu X Y, Hu X D, Wang Q Hi.2021. Propofol induces apoptosis of hepatocellular carcinoma cells by upregulating miR-134 expression[J]. Translational Cancer Research, 10(6): 3004-3012. [20] Irusta G, Parborell F, Peluffo M, et al.2003. Steroidogenic acute regulatory protein in ovarian follicles of gonadotropin-stimulated rats is regulated by a gonadotropin-releasing hormone agonist[J]. Biology of Reproduction, 68(5): 1577-1583. [21] Jiang Z W, Pei L X, Xie Y, et al.2021. Ruyiping formula inhibits metastasis via the microRNA-134-SLUG axis in breast cancer[J]. BMC Complementary Medicine and Therapies, 21: 191. [22] King K L, Cidloeski J A.2003. Cell cycle regulation and apoptosis[J]. Annual Review of Physiology, 60(1): 601-617. [23] Kroemer G, Reed J C.2001. Mitochondrial control of cell death.[J]. Nature Medicine, 1(5): 513-519. [24] Laulier C, Lopez B S.2012. The secret life of Bcl-2: Apoptosis-independent inhibition of DNA repair by Bcl-2 family members[J]. Mutation Research-Reviews in Mutation Research, 751(2): 247-257. [25] Li Q Q, Du X, Pan Z X, et al.2018. The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1[J]. Molecular and Cellular Endocrinology, 476: 84-95 [26] Li P B, Huang G.2022. Long noncoding RNA LINC00858 promotes the progression of ovarian cancer via regulating the miR-134-5p/TRIM44 axis[J]. Journal of Receptor and Signal Transduction Research, 42(4):382-389. [27] Liu J, Li X,Yao Y, et al.2018. miR-1275 controls granulosa cell apoptosis and estradiol synthesis by impairing LRH-1/CYP19A1 axis[J]. Biochimica et Biophysica Acta, 1861(3): 246-257. [28] Liu Z, Guo S, Sun H, et al.2020. Circular RNA circHIPK3 elevates CCND2 expression and promotes cell proliferation and invasion through miR-124 in glioma[J]. Frontiers in Genetics, 11: 1013. [29] Ma Z, Li K, Chen P, et al.2020. MiR-134, mediated by IRF1, suppresses tumorigenesis and progression by targeting VEGFA and MYCN in osteosarcoma[J]. Anti-cancer Agents in Medicinal Chemistry, 20(10): 1197-1208. [30] Mohamed T M A, Ang Y S, Radzinsky E, et al.2018. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration[J]. Cell, 173(1): 104-116. [31] Nascimento L R D, Domingueti C P.2019. MicroRNAs: New biomarkers andpromising therapeutic targets for diabetic kidney disease[J]. Jornal Brasileiro de Nefrologia, 41(3): 412-422. [32] Ola M S, Nawaz M, Ahsan H.2011. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis[J]. Molecular & Cellular Biochemistry, 351(1-2): 41-58. [33] Pande H O, Tesfaye D, Hoelker M, et al.2018. MicroRNA-424/503 cluster members regulate bovine granulosa cell proliferation and cell cycle progression by targeting SMAD7 gene through activin signalling pathway[J]. Journal of Ovarian Research, 11(1): 1-17. [34] Peng J Y, An X P, Fang F, et al.2016. MicroRNA-10b suppresses goat granulosa cell proliferation by targeting brain-derived neurotropic factor[J]. Domestic Animal Endocrinology, 54: 60-67. [35] Satriyo P B, Su C M, Huang W C, et al.2021. 4-Acetylantroquinonol B downregulates CDK2/CDK4 expression and DNA damage response signaling for triggers programmed cell death in triple negative breast cancer cells[J]. Toxicology and Applied Pharmacology, 422: 115493. [36] Sirotkin A V, M Lauková, D Ovcharenko, et al.2010. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis[J]. Journal of Cellular Physiology, 223(1): 49-56. [37] Tu J J, Yang Y Z, Hoi-Hung A C, et al.2017. Conserved miR-10 family represses proliferation and induces apoptosis in ovarian granulosa cells[J]. Scientific Reports, 7: 41304. [38] Yang C, Zhang G, Zhang Y H, et al.2021. Exosome miR-134-5p restrains breast cancer progression via regulating PI3K/AKT pathway by targeting ARHGAP1[J]. Journal of Obstetrics and Gynaecology Research, 47(11): 4037-4048. [39] Yao Y, J Niu, Sizhu S, et al.2018. MicroRNA-125b regulates apoptosis by targeting bone morphogenetic protein receptor 1B in yak granulosa cells[J]. DNA and Cell Biology, 37(11): 878-887. [40] Yao G D, Yin M M, Lian J, et al.2010. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4[J]. Molecular Endocrinology, 24(3): 540-551. [41] Yuan X L, Deng X, Zhou X F, et al.2018. MiR-126-3p promotes the cell proliferation and inhibits the cell apoptosis by targeting TSC1 in the porcine granulosa cells[J]. In vitro Cellular & Developmental Biology. Animal, 54(10): 715-724. [42] Zhang J Q, Gao B W, Guo H X, et al.2019a. miR-181a promotes porcine granulosa cell apoptosis by targeting TGFBR1 via the activin signaling pathway[J]. Molecular and Cellular Endocrinology, 499: 110603. [43] Zhang S, Wang L, Wang L, et al.2019b. MiR-17-5p affects porcine granulosa cell growth and oestradiol synthesis by targeting E2F1 gene[J]. Reproduction in Domestic Animals, 54(11): 1459-1469. [44] Zhu L, Jing J, Qin S Q, et al.2022. miR-99a-5p inhibits target gene FZD5 expression and steroid hormone secretion from goat ovarian granulosa cells[J]. Journal of Integrative Agriculture, 21(4): 1137-1145. |
|
|
|