|
|
Effects of Melatonin on the Sprout Tumble Under High Temperature and DNA Methylation in Pinellia ternata |
CUI Wan-Ning1,2, YANG Jin-Rong1,2, LIU Meng-Meng1,2, HAN Lei1,2, LIU Xiao1,2, YOU Qian1,2, ZHAO Feng-Lan1,2, XUE Tao1,2, ZHU Yan-Fang1,2,*, XUE Jian-Ping1,2,* |
1 College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; 2 Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, Huaibei 235000, China |
|
|
Abstract Melatonin is widely involved in the regulation of plant stress response, however, the function and regulatory mechanism of melatonin in the sprout tumble of Pinellia ternata under high-temperature are unclear. In this study, the effect of melatonin treatment on the rate of sprout tumble in P. ternata were compared and the corresponding genomic methylation variation in P. ternata were analyzed based on methylation-sensitive amplification polymorphism (MSAP). The results showed that both 50 and 100 μmol/L melatonin significantly reduced the sprout tumble rate of P. ternata. And the effect of 50 μmol/L melatonin treatment on the methylation variation of the P. ternata genome was analyzed. The total methylation rate of the control group was 56.97% and 45.38% at 0 and 6 h high temperature stress, respectively, and the methylation rate of 50 μmol/L melatonin-treated group was 52.11% at 6 h high temperature stress, indicated that melatonin treatment generally delayed the high temperature stress-induced demethylation of the genome. The analysis of differential methylation bands revealed that melatonin treatment mainly affected the modification of methylation in the mitochondrial and chloroplast genomes of P. ternata. Additionally, P. ternata catalase 2 (PtCAT2) was demethylated under melatonin treatment, and the gene expression was up-regulated, indicated that melatonin could regulate the accumulation of reactive oxygen species through methylation modification, and then participated in the regulation of sprout tumble in P. ternata under high temperature stress. This study explored the function of melatonin on the sprout tumble of P. ternata under high-temperature, and analyzed its possible regulatory pathways from an epigenetic perspective, providing a reference for the study of the regulation mechanism of the sprout tumble of P. ternata.
|
Received: 23 April 2022
|
|
Corresponding Authors:
* yfangok@163.om; xuejp@163.com
|
|
|
|
[1] 晁秋杰, 刘晓, 韩磊, 等. 2020. 高温胁迫诱导半夏基因组甲基化的变异分析[J]. 中国中药杂志, 45(2): 341-346. (Chao Q J, Liu X, Han L, et al.2020. Variation analysis of genomic methylation induced by high temperature stress in Pinellia ternata[J]. China Journal of Chinese Materia Medica, 45(2): 341-346.) [2] 黄文静, 孙晓春, 李铂, 等. 2019. 干旱胁迫诱导半夏倒苗的细胞程序性死亡研究[J]. 中国中药杂志, 44(10): 2020-2025. (Huang W J, Sun X C, Li P, et al.2019. Programmed cell death induced by drought stress in sprout tumble of Pinellia ternata[J]. China Journal of Chinese Materia Medica, 44(10): 2020-2025.) [3] 李福生, 李志明, 于晓明, 等. 2021. 中医药辨治江西地区2019新型冠状病毒肺炎验案3则[J]. 江西中医药大学学报, 2021, 33(5): 16-20. (Li F S, Li C M, Yu X M, et al.2021. Three clinical cases of diagnoses and treatment of COVID-19 by traditional Chinese medicine in Jiangxi area[J]. Journal of Jiangxi University of Traditional Chinese Medicine, 33(5): 16-20.) [4] 李荣华, 夏岩石, 刘顺枝, 等. 2009. 改进的CTAB提取植物DNA方法[J]. 实验室研究与探索, 28(9): 14-16. (Li R H, Xia R R, Liu S Z, et al.2009. An improved CTAB method for plant DNA extraction[J]. Laboratory Research and Exploration, 28(9): 14-16.) [5] 刘德帅, 姚磊, 徐伟荣, 等. 2022. 褪黑素参与植物抗逆功能研究进展[J]. 植物学报, 57(1): 111-126. (Liu D S, Yao L, Xu W R, et al.2022. Research progress of melatonin in plant stress resistance[J]. Chinese Bulletin of Botany, 57(1): 111-126. ) [6] 刘琼瑶, 黄华宏, 冯惠平, 等. 2015. 矮生观赏杉木DNA甲基化的水平与模式分析[J]. 园艺学报, 42(10): 2015-2022. (Liu Q Y, Huang H H, Feng H P, et al.2015. Analysis of DNA methylation levels and patterns in dwarf ornamental Cunninghamia lanceolata[J]. Acta Horticulturae Sinica, 42(10): 2015-2022.) [7] 刘云芬, 王薇薇, 祖艳侠, 等. 2019. 过氧化氢酶在植物抗逆中的研究进展[J]. 大麦与谷类科学, 36(1): 5-8. (Liu Y F, Wang W W, Zu Y X, et al.2019. Research progress on the effects of catalase on plant stress tolerance[J]. Barley and Cereal Sciences, 36(1): 5-8.) [8] 苏克雷, 张业清. 2018. 经方治疗慢性咳嗽的思路与方法[J]. 中国中药杂志, 43(12): 2435-2441. (Su K L, Zhang Y Q.2018. Thought and method of classic formulae in treatment of chronic cough[J]. China Journal of Chinese Materia Medica, 43(12): 2435-2441.) [9] 薛建平, 丁勇, 张爱民, 等. 2004. 高温胁迫下半夏倒苗前后保护酶活力的变化[J]. 中国中药杂志, 29(7): 641-643. (Xue J P, Ding Y, Zhang A M, et al.2004. The change of activity of protective enzyme around sprout tumble of Pinellia ternata under high temperature stress[J]. China Journal of Chinese Materia Medica, 29(7): 641-643.) [10] 薛建平, 王兴, 张爱民, 等. 2010. 高温胁迫下半夏倒苗前后光合参数及叶绿素荧光特性的变化[J]. 中国中药杂志, 35(17): 2233-2235. (Xue J P, Wang X, Zhang A M, et al.2010. Changes of photosynthesis parameters and chlorophyll fluorescence around sprout tumble of Pinellia ternata under high temperature stress[J]. China Journal of Chinese Materia Medica, 35(17): 2233-2235.) [11] 薛建平, 张爱民, 杨建, 等. 2007. 高温胁迫下半夏倒苗前后内源激素的变化[J]. 中国中药杂志, 32(23): 2489-2491. (Xue J P, Zhang A M, Yang J, et al.2007. Change of endogenou shormone around sprout tumble of Pinellia ternata under high temperature stress[J]. China Journal of Chinese Materia Medica, 32(23): 2489-2491.) [12] 张明, 钟国跃, 马开森, 等. 2004. 半夏倒苗原因的实验观察研究[J]. 中国中药杂志, 29(3): 273-274. (Zhang M, Zhong G Y, Ma K S, et al.2004. Experimental observation study on the causes of seedling collapse in Pinellia ternata[J]. China Journal of Chinese Materia Medica, 29(3): 273-274.) [13] 张益勋. 2019. 褪黑素调控DNA甲基化对人增生性瘢痕成纤维细胞转化的影响[D]. 硕士学位论文,暨南大学, 导师: 谢有富, pp. 13-33. (Zhang Y X.2019. The effect of melatonin on DNA methylation in human hypertrophic scar fibroblast differentiation[D]. Thesis for M. S., Jinan University, Suppervisor: Xie Y F, pp. 13-33.) [14] 朱畇昊, 张梦佳, 董诚明. 2021. 外源MeJA对高温胁迫下半夏抗氧化系统和胁迫基因的影响[J]. 植物研究, 41(1): 67-73. (Zhu L H, Zhang M J, Dong C M.2021. Effects of exogenous MeJA on antioxidant system and stress genes of Pinellia ternata under high temperature stress[J]. Bulletin of Botanical Research, 41(1): 67-73.) [15] 左军, 牟景光, 胡晓阳. 2019. 半夏化学成分及现代药理作用研究进展[J]. 辽宁中医药大学学报, 21(9): 26-29. (Zuo J, Mou J G. Hu X Y.2019. Research progress in the chemical constituents and modern pharmacological effects of Pinellia ternata[J]. Journal of Liaoning University of Traditional Chinese Medicine, 21(9): 26-29.) [16] Alam M N, Zhang L, Yang L, et al.2018. Transcriptomic profiling of tall fescue in response to heat stress and improved thermotolerance by melatonin and 24-epibrassinolide[J]. BMC Genomics, 19(1): 224. [17] Byeon Y, Back K.2014. Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities[J]. Journal of Pineal Research, 56(2): 189-195. [18] Fleta-Soriano E, Díaz L, Bonet E, et al.2017. Melatonin may exert a protective role against drought stress in maize[J]. Journal of Agronomy and Crop Science, 203(4): 286-294. [19] Fryer M J, Oxborough K, Mullineaux P M, et al.2002. Imaging of photo-oxidative stress responses in leaves[J]. Journal of Experimental Botany, 53(372): 1249-1254. [20] Jahan M S, Shu S, Wang Y, et al.2019. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis[J]. BMC Plant Biology, 19(1): 414. [21] Lu H D, Xue T, Zhang A M, et al.2013. Construction of an SSH library of Pinellia ternata under heat stress, and expression analysis of four transcripts[J]. Plant Molecular Biology Reporter, 31(1): 185-194. [22] Ma G J, Zhang M D, Xu J L, et al.2020. Transcriptomic analysis of short-term heat stress response in Pinellia ternata provided novel insights into the improved thermotolerance by spermidine and melatonin[J]. Ecotoxicology and Environmental Safety, 202: 110877. [23] Manafi H, Baninasab B, Gholami M, et al.2022. Exogenous melatonin alleviates heat-induced oxidative damage in strawberry (Fragaria × ananassa Duch. cv. 'Ventana') plant. Journal of Plant Growth Regulation, 41: 52-64. [24] Reiter R J, Tan D X, Terron M P, et al.2007. Melatonin and its metabolites: New findings regarding their production and their radical scavenging actions[J]. Acta Biochimica Polonica, 54(1): 1-9. [25] Shi H T, Tan D X, Reiter R J, et al.2015. Melatonin induces class A1 heat-shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis[J]. Journal of Pineal Research, 58(3): 335-342. [26] Tal O, Haim A, Harel O, et al.2011. Melatonin as an antioxidant and its semi-lunar rhythm in green macroalga Ulva sp.[J]. Journal of Experimental Botany, 62(6): 1903-1910. [27] Tan D X, Hardeland R, Manchester L C, et al.2012. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science[J]. Journal of Experimental Botany, 63(2): 577-597. [28] Vanhoudt N, Vandenhove H, Horemans N, et al.2011. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part Ⅰ: Responses in the roots[J]. Journal of Environmental Radioactivity, 102(6): 630-637. [29] Wang Y M, Lu C, Huang H X, et al.2021. A lipid-soluble extract of Pinellia pedatisecta Schott orchestrates intratumoral dendritic cell-driven immune activation through SOCS1 signaling in cervical cancer[J]. Journal of Ethnopharmacology, 267: 112837. [30] Xu W, Cai S Y, Zhang Y, et al.2016. Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants[J]. Journal of Pineal Research, 61(4): 457-469. [31] Xue T, Xiong Y J, Shi J, et al.2021. UHPLC-MS-based metabolomic approach for the quality evaluation of Pinellia ternata tubers grown in shaded environments[J]. Journal of Natural Medicines, 75(4): 1050-1057. [32] Xue T, Zhang H, Zhang Y Y, et al.2019. Full-length transcriptome analysis of shade-induced promotion of tuber production in Pinellia ternata[J]. BMC Plant Biology, 19(1): 565. [33] Zhang N, Zhao B, Zhang H J, et al.2013. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.)[J]. Journal of Pineal Research, 54(1): 15-23. |
|
|
|