|
|
Study on Mutagenesis, Bacteriostasis and Disease Prevention Effect of Bacillus velezensis ZF145 |
LIU Shi-Cheng1,2,*, LI Lei2,*, ZHANG Xue-Yan3, SHI Yan-Xia2, CHAI A-Li2, FAN Teng-Fei2, LI Bao-Ju2,**, XIE Xue-Wen2,** |
1 College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China; 2 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 School of Agricultural, Ningxia University, Yinchuan 750021, China |
|
|
Abstract Bacterial angular spot of cucumber is one of the common bacterial diseases in the greenhouse cucumber (Cucumis sativus) cultivation. Using biocontrol bacteria is an important method to control the disease. In order to improve the antagonistic activity of Bacillus velezensis against bacterial angular spot of cucumber, the methods of ultraviolet (UV) mutagenesis and the atmospheric room temperature plasma (ARTP) mutagenesis were used to mutagenize the Bacillus velezensis strain ZF145. Taking Pseudomonas amygdali pv. Lachrymans as the indicator bacteria, screening was carried out by plate confrontation and in vivo experiment, and the mutation efficiency of the 2 mutagenesis methods was compared. The results showed that the control effect of positive mutant strain A561 on cucumber bacterial angular spot was 63.61%, which was much higher than that of ZF145 and the 5% Zhongshengmycin Wettable Powder. The expressions of the surfactin synthetase gene clusters (srf) genes srfAA, srfAB and srfAC associated with the synthesis of surfactin were significantly up-regulated (P<0.05). The positive mutation rate of ARTP mutation was 10.86%, much higher than that of UV mutation, which was more suitable for mutation breeding of Bacillus. This study provides a theoretical support for the mutation breeding of Bacillus velezensis, and is of great significance for the biological control of bacterial angular spot of cucumber.
|
Received: 24 February 2022
|
|
Corresponding Authors:
** libaoju@caas.cn; xiexuewen@caas.cn
|
About author:: * These authors contributed equally to this work |
|
|
|
[1] 陈利娟, 吴斌, 何冰芳. 2015. ARTP诱变选育鼠李糖脂高产菌及鼠李糖脂促进枯草芽孢杆菌产纤维素酶的研究[J]. 生物技术通报, 31(11): 195-201. (Chen L J, Wu B, He B F.2015. Screening of high-yield rhamnolipid producing strain by ARTP and the effect of rhamnolipid on the cellulase and xylanase[J]. Biotechnology Bulletin, 31(11): 195-201.) [2] 马樱芳. 2016. 基于ARTP诱变、表达元件定向改造及发酵优化提高枯草芽孢杆菌生产重组碱性淀粉酶的水平[D]. 硕士学位论文, 江南大学, 导师: 沈微, pp. 1-62. (Ma Y F.2016. Improving the yield of recombinant alkaline amylase in Bacillus subtilis by ARTP mutagenesis, directed modification of expression elements and fermentation optimizatio[D]. Thesis for M.S., Jiangnan University, Supervisor: Shen W, pp. 1-62.) [3] 彭月, 顾兴芳, 张圣平, 等. 2021. 黄瓜细菌性角斑病研究进展[J]. 中国蔬菜, 03: 28-35. (Peng Y, Gu X F, Zhang S P, et al.2021. Angle of cucumber bacterial spot research progress[J]. China Vegetables, 03: 28-35.) [4] 石延霞, 张楠, 李宝聚. 2008. 细菌性角斑病病菌诱导黄瓜产生系统抗病性机理的研究[J]. 园艺学报, 35(02): 221-226. (Shi Y X, Zhang N, Li B J.2008. Studies of mechanism of resistance in cucumbei induced by Pseudomonas syringae pv. Lachrymans[J]. Acta Horticulturae Sinica, 35(2): 221-226.) [5] 田辉. 2021. 贝莱斯芽孢杆菌遗传转化体系的建立及抑菌物质鉴定[D]. 硕士学位论文, 中国农业科学院, 导师: 刘波, pp. 1-70. (Tian H.2021. Establishment of genetic transformation system of Bacillus velezensis and identification of antifungal substances[D]. Thesis for M.S., Chinese Academy of Agricultural Sciences, Supervisor: Liu B, pp. 1-70.) [6] 王慧. 2016. 芽孢杆菌遗传操作体系初建及工程菌株分子改良[D]. 博士学位论文, 中国农业科学院, 导师: 姚斌, pp. 1-127. (Wang H.2016. Fungmental establishment of Bacillus genetic manipulation system and moleculai improvement of engineered Bacillus strains[D]. Thesis for Ph. D., Chinese Academy of Agricultural Sciences, Supervisor: Yao B, pp. 1-127.) [7] 王玉霞, 胡基华, 刘宇帅, 等. 2017. 低温生防菌株的诱变选育及生防效果[J]. 核农学报, 31(10): 1873-1880. (Wang Y X, Hu J H, Liu Y S, et al.2017. Mutation breeding of low temperature biocontrol strain and its biocontrol effect[J]. Journal of Nuclear Agricultural Sciences, 31(10): 1873-1880.) [8] 王晓云. 2015. 高产蛋白酶枯草芽孢杆菌的筛选与诱变选育研究[D]. 硕士学位论文, 山东农业大学, 导师: 陈红菊, 季相山, pp. 1-55. (Wang X Y.2015. Screening and mutation breeding of high-yield protease Bacillus subtilis[D].Thesis for M.S., Shandong Agricultural University, Supervisor: Chen H J, Ji X S, pp. 1-55.) [9] 薛莹莹, 林福兴, 别小妹, 等. 2019. ARTP诱变联合抗生素抗性选育纳豆激酶高产菌株[J]. 食品工业科技, 40(23): 93-97. (Xue Y Y, Lin F X, Bie X M, et al.2019. Breeding of nattokinase high-producing strains by ARTP mutagenesis combined with antibiotic resistance[J]. Science and Technology of Food Industry, 40(23): 93-97.) [10] 薛应钰, 叶巍, 张树武, 等. 2015. 紫外诱变选育木霉高效解磷菌株[J]. 核农学报, 29(08): 1509-1516. (Xue Y Y, Ye W, Zhang S W, et al.2015. Screening of high efficiency phosphate-solubilizing Trichoderma sp. strains using ultraviolet mutagenesis[J]. Journal of Nuclear Agricultural Sciences, 29(08): 1509-1516.) [11] 苑宝洁, 李磊, 张红杰, 等. 2021. 黄瓜细菌性角斑病拮抗细菌的筛选及其防治效果[J/OL]. 中国生物防治学报, 1-10. (Yuan B J, Li L,Zhang H J, et al.2021, Screening of antagonistic bacteria against bacterial angular leaf spot of cucumber and its control effect[J/OL]. Chinese Journal of Biological Control, 1-10.) [12] 苑宝洁, 李磊, 张红杰, 等 . 2022. 黄瓜细菌性角斑病拮抗细菌的筛选及其防治效果[J]. 中国生物防治学报, 38(02):421-427. (Yuan B J, Li L,Zhang H J, et al.2022, Screening of antagonistic bacteria against bacterial angular leaf spot of cucumber and its control effect[J]. Chinese Journal of Biological Control, 38(02) 421-427.) [13] 张彩文, 程坤, 张欣, 等. 2019. 贝莱斯芽胞杆菌(Bacillus velezensis)分类学及功能研究进展[J]. 食品与发酵工业, 45(17): 258-265. (Zhang C W, Cheng K, Zhang X, et al.2019. Advances in taxonomy and function of Bacillus velezensis[J]. Food and Fermentation Industries, 45(17): 258-265.) [14] 张德锋, 高艳侠, 王亚军, 等. 2020. 贝莱斯芽孢杆菌的分类、拮抗功能及其应用研究进展[J]. 微生物学通报, 47(11): 3634-3649. (Zhang D F, Gao Y X, Wang Y J, et al.2020. Advances in taxonomy, antagonistic function and application of Bacillus velezensis[J]. Microbiology China, 47(11): 3634-3649.) [15] 张亮, 王改兰, 段建南, 等. 2015. 广谱生防菌对番茄枯萎病的防病效果及其机理[J]. 中国生物防治学报, 31(06): 897-906. (Zhang L, Wang G L, Duan J N, et al.2015. Suppression of tomato fusarium wilt disease by bacteria strains and their mechanism[J]. Chinese Journal of Biological Control, 31(06): 897-906.) [16] 张心青, 张萧萧, 杨传伦, 等. 2020. 一株对番茄枯萎病有拮抗作用的枯草芽孢杆菌的ARTP诱变与筛选[J]. 中国农学通报, 36(26): 44-49. (Zhang X Q, Zhang X X, Zhang C L, et al.2020. Bacillus subtilis against tomato fusarium wilt: ARTP mutagenesis and screening[J]. Chinese Agricultural Science Bulletin, 36(26): 44-49.) [17] 张雪, 张晓菲, 王立言, 等. 2014. 常压室温等离子体生物诱变育种及其应用研究进展[J]. 化工学报, 65(07): 2676-2684. (Zhang X, Zhang X F, Wang L Y, et al.2014. Recent progress on atmospheric and room temperature plasma mutation breeding technology and its applications[J]. CIESC Journal, 65(07): 2676-2684.) [18] 赵红艳. 2018. 内蒙古地区马铃薯疮痂病生防菌的筛选鉴定及防效研究[D]. 硕士学位论文, 山东农业大学, 导师: 周波, 高继明, pp. 1-58. (Zhao H Y.2018. Isolation and identification of biocontrol bacteria and control effect study for potato common scab in Inner Mongolia[D]. Thesis for M.S., Shandong Agricultural University, Supervisor: Zhou B, Gao J M, pp. 1-58.) [19] Cui L X, Yang C D, Wei L J, et al.2020. Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab[J]. Biological Control, 141: 104156-104156 [20] Harighi B.2007. Angular leaf spot of cucumber caused by Pseudomonas syringae pv. lachrymans in Kurdistan[J]. Plant Disease, 91(6): 769-769. [21] Jeong H, Klopper W, Ryu C M.2015. Genome sequences of Pseudomonas amygdali pv. Tabaci strain ATCC 11528 and pv. Lachrymans strain 98A-744[J]. Genome Announcements, 3(3): e00683-15. [22] Ruangwong O, Pornsuriya C, Pitija K, et al.2021. Biocontrol mechanisms of Trichoderma koningiopsis PSU3-2 against postharvest anthracnose of chili pepper[J]. Journal of Fungi, 7(4): 276-286. [23] Trinh T H T, Wang S L, Nguyen V B, et al.2019, A potent antifungal rhizobacteria Bacillus velezensis RB.DS29 isolated from black pepper (Piper nigrum L.)[J]. Research on Chemical Intermediates, 45(11): 5309-5323. [24] Wang Y X, Wang J, Zhang X, et al.2021. Genomic and transcriptomic analysis of Bacillus subtilis JNFE1126 with higher nattokinase production through ultraviolet combined 60Co-γ ray mutagenesis[J]. LWT-Food Science and Technology, 147: 111652. [25] Zeng W Z, Guo L K, Xu S, et al.2020. High-throughput screening technology in industrial biotechnology[J]. Trends Biotechnology. 38(8): 888-906. |
[1] |
WANG Jia-Chuan, ZHANG De-Feng, WANG Ya-Jun, LIANG Chi-Qiang, XIONG Xiu-Ling, SHI Cun-Bin, WANG Fang, LIU Li-Juan. Screening, Identification and Biological Characteristics of An Enzyme-producing Bacillus Strain Isolated from Siniperca chuatsi[J]. 农业生物技术学报, 2021, 29(3): 558-570. |
|
|
|
|