|
|
Isolation and Identification of Vanderbylia robiniophila WH5 and Optimization of Its Liquid Fermentation Processs |
TANG Shao-Jun, LEI Ping, YANG Yi, SHAO Chen-Xia, HE Yue-Lin, XU Jun* |
Hunan Institute of Microbiology, Changsha 410009 , China |
|
|
Abstract Vanderbylia robiniophila is an important medicinal macrofungi. However, due to the lack of wild resources, the long period and the high cost of artificial cultivation, the fruit body of V. robiniophila is limited, so the extraction of polysaccharides from fermentation broth is an important way. In order to enrich the strain resources of V. robiniophila and improve the yield of polysaccharide in fermentation broth, a pure culture of V. robiniophila WH5 was obtained through the tissue isolation, it was identified by morphology and internal transcribed spacer (ITS) sequence analysis. The liquid fermentation technology of WH5 was optimized by single factor experiment and orthogonal experiment, and the anti-tumor activities of the exopolysaccharide in the fermentation broth were analyzed by cell experiment in vitro. The results showed that the length of ITS sequence from WH5 strain was 637 bp, and it was 99% similar to V. robiniophila (GenBank No. KX081122.1), clustered on one branch in the phylogenetic tree. Combining fruit body and mycelium morphology, strain WH5 was identified as V. robiniophila. The optimum liquid fermentation conditions of strain WH5 were as follows: Soluble starch 30 g/L, peptone 15 g/L, MgSO4•7H2O 1.0 g/L, KH2PO4 2.0 g/L, pH7.0, rotating speed 160 r/min, fermentation temperature 30 ℃, fermentation time 9 d, the yields of mycelium and exopolysaccharide were 27.52 and 1.91 g/L, respectively. It was found that exopolysaccharides from the fermentation broth could inhibit B16 and Hep-3B tumor cells with the half-inhibitory concentration (IC50) 24.12 and 13.25 mg/mL, respectively. This study is of great significance to enrich the fungus resources of V. robiniophila and promote the utilization of polysaccharides in the fermentation broth of V. robiniophila.
|
Received: 25 April 2022
|
|
Corresponding Authors:
* hnswsw_xj@163.com
|
|
|
|
[1] 常堃, 蔡婧, 李世华, 等. 2018. 新粗毛革耳生物学特性与驯化[J]. 食用菌学报, 25(4): 52-56. (Chang K, Cai J, Li S H, et al.2018. Biological characteristics and artificial cultivation of Panus lecomtei[J]. Acta Edulis Fungi, 25(4): 52-56.) [2] 崔驰浩, 黄亮, 班立桐, 等. 2020. 木蹄层孔菌液体发酵工艺条件优化[J]. 中国食用菌, 39(07): 26-31. (Cui C H, Huang L, Ban L T, et al.2020. Optimization of liquid fermentation conditions of Fomes fomentarius[J]. Edible Fungi, 39(07): 26-31.) [3] 戴玉成. 2009. 中国多孔菌名录[J]. 菌物学报, 28(3): 315-327. (Dai Y C.2009. A checklist of polypores in China[J]. Mycosystema, 28(3): 315-327.) [4] 戴玉成. 2021. 中国木本植物病原木材腐朽菌研究[J]. 菌物学报, 31(04): 493-509. (Dai Y C.2021. Pathogenic wood-decaying fungi on woody plants in China[J]. Mycosystema, 31: 493-509.) [5] 戴玉成, 图力古尔, 崔宝凯, 等. 2013. 中国药用真菌图志[M]. 哈尔滨: 东北林业大学出版社, pp. 119-120. (Dai Y C, Bau T, Cui B K, et al.2013. Illustrations of Medicinal Fungi in China[M]. Northeast Forestry University Publishing House, Harbin, China, pp. 119-120.) [6] 杜萍, 何双辉, 钱玺, 等. 2019. 落叶松锈迷孔菌产多糖液体培养基的优化及其体外抗氧化活性[J]. 菌物学报, 38(6): 951-969. (Du P, He S H, Qian X, et al.2019. Medium optimization and in vitro antioxidant activities of exopolysaccharides of Porodaedalea iaricis[J]. Mycosystema, 8(6): 951-969.) [7] 高坤, 冯杰, 颜梦秋, 等. 2019. 灵芝液态发酵高产胞外多糖菌株筛选及多糖特性分析[J]. 菌物学报, 38(6): 886-894. (Gao K, Feng J, Yan M Q, et al.2019. Screening of extracellular polysaccharide high-yielding strains of Ganoderma lingzhi in liquid submerged fermentation and polysaccharide characteristic analysis[J]. Mycosystema, 38(6): 886-894.) [8] 刘城移, 袁源, 郝心怡, 等. 2020. 蝉虫草菌丝体胞内和胞外多糖抗肝细胞氧化损伤比较研究[J]. 菌物学报, 39(2): 421-433. (Liu C Y, Yuan Y, He X Y, et al.2020. A comparative study of intracellular and extracellular polysaccharides in mycelia of Cordyceps cicadae against oxidative damage of hepatocytes[J]. Mycosystema, 39(2): 421-433.) [9] 唐少军, 雷平, 邵晨霞, 等. 2021. 粗毛纤孔菌液体发酵工艺优化及胞外多糖的抗菌和抗肿瘤活性[J]. 食品工业科技, 42(05): 93-99. (Tang S J, Lei P, Shao C X, et al.2021. Optimization of liquid fermentation process of Inonotus hispidus and antibacterial and antitumor activities of exopolysaccharides[J]. Science and technology of food industry, 42(05): 93-99.) [10] 田颖颖, 杨爱琳, 陈孝男, 等. 2020. 槐耳清膏抑制人非小细胞肺癌NCI-H1299细胞生长和转移及其作用机制研究[J]. 中国中药杂志, 45(15): 3700-3706. (Tian Y Y, Yang A L, Chen X N, et al.2020. Effect of Huaier aqueous extract on growth and metastasis of human non-small cell lung cancer NCI-H1299 cells and its underlying mechanisms[J]. China Journal of Chinese Materia Medica, 5(15): 3700-3706.) [11] 王雨曦, 袁海生. 2021. 槐生拜尔孔菌(槐耳)的化学成分及其抗肿瘤活性研究进展[J]. 菌物学报, 40(3): 411-422. (Wang Y X, Yuan H S.2021. Research progress on chemical constituents and anti-tumor effects of Huai'er(Vanderbylia robiniophila)[J]. Mycosystema, 40(3): 411-422.) [12] 徐鑫, 陈青君, 胡渤洋, 等. 2018. 野生槐耳的分离、鉴定、培养条件及产漆酶能力[J]. 应用与环境生物学报, 24(3): 0570-0575. (Xu X, Chen Q J, Hu B Y, et al.2018. Isolation, identification, culture conditions, and laccase production of a wild mushroom 'Huaier'[J]. Chinese Journal of Applied and Environmental Biology, 24(3): 0570-0575.) [13] 杨爱琳, 胡仲冬, 屠鹏飞. 2015. 槐耳抗肿瘤作用研究进展[J]. 中国中药杂志, 40(24): 4805-4810. (Yang A L,Hu Z D,Tu P F.2015. Research progress on anti-tumor effect of Huaier[J]. China Journal of Chinese Materia Medica, 40(24): 4805-4810.) [14] 于晓红, 吴宪玲, 付薇, 等. 2017. 西洋参多糖脱色脱蛋白方法研究[J]. 中国食品学报, 17(11): 145-149. (Yu X H, Wu X L, Fu W,et al.2017. Decoloration and deproteinization of polysaccharides from American Ginseng[J].Journal of Chinese Institute of Food Science and Technology, 17(11): 145-149.) [15] 张惟杰. 1999. 糖复合物生化研究技术[M]. (第二版). 杭州: 浙江大学出版社, pp. 10-12. (Zhang W J.1999. Biochemical Research Technology of Sugar Complex[M]. 2nd Edition, Hangzhou: Zhejiang University Press, pp. 10-12.) [16] Cui B K, Wei Y L, Dai Y C, 2006. Polypores from Zijin Mountain, Jiangsu province[J]. Mycosystema, 25(1): 9-14. [17] Cui B K, Li H J, Ji X, et al.2019. Species diversity, taxonomy and phylogeny of polyporaceae (basidiomycota) in China[J]. Fungal Diversity, 97: 137-392. [18] Dang X, Leo S W, Luo S H,et al.2021. Design, synthesis and biological evaluation of novel thiazole-derivatives as mitochondrial targeting inhibitors of cancer cells[J]. Bioorganic Chemistry, 114: 105015. [19] Feng J, Feng N, Tang Q J, et al.2019. Optimization of Ganoderma lucidum polysaccharides fermentation process for large-scale production[J]. Applied Biochemistry and Biotechnology, 189(3): 972-986. [20] Hu B, Yan W, Wang M, et al.2019. Huaier polysaccharide inhibits the stem-like characteristics of ERalpha-36 high triple negative breast cancer cells via inactivation of the ERα-36 signaling pathway[J]. International Journal of Biological Sciences, 15(7): 1358-1367. [21] Jiang G Y, Lei A T, Chen Y, et al.2021. The protective effects of the Ganoderma atrum polysaccharide against acrylamide-induced inflammation and oxidative damage in rats[J]. Food & Function, 12(1): 397-407. [22] Jia X, Wang C, Bai Y, et al.2017. Sulfation of the extracellular polysaccharide produced by the king oyster culinary-medicinal mushroom, pleurotus eryngii (Agaricomycetes), and its antioxidant properties in vitro[J]. International Journal of Medicinal Mushrooms, 19(4): 355-362. [23] Kang Z,Tang K J, Liang Y, et al.2021. Purification and antioxidant and anti-inflammatory activity of extracellular polysaccharopeptide from sanghuang mushroom, Sanghuangporus lonicericola[J].Journal of the Science of Food and Agriculture, 101(3): 1009-1020. [24] Li C, Wang X L, Chen T, et al.2020. Trametes robiniophila Murr in the treatment of breast cancer[J]. Biomedicine & Pharmacotherap, 128(8): 110254. [25] Lou H W, Guo X Y, Zhang X C, et al.2019. Optimization of cultivation conditions of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes) for the highest antioxidant activity and antioxidant content[J]. International Journal of Medicinal Mushrooms, 21(4): 353-366. [26] Ryvarden L.1983. Type studies in the polyporaceae 14. Species described by N. patouillard, either alone or with other mycologists[J]. Occasional Papers of the Farlow Herbarium of Cryptogamic Botany, 18(2): 1-39. [27] Song X J, Li Y M, Zhang H W, et al.2015. The anticancer effect of Huaier (Review)[J]. Oncology Reports, 34(1): 12-21. [28] Wei C, Liu Z F, Li L C, et al.2018. The anticancer effect of huaier extract in renal cancer 786-O cells[J]. Pharmacology, 102(6): 316-323. [29] Wu F, Zhou L W, Yang Z L, et al.2019. Resource diversity of Chinese macrofungi: Edible, medicinal and poisonous species[J]. Fungal Diversity, 98: 1-76. [30] Wang Y, Liu Y, Hu Y, et al.2014. Optimization of polysaccharides extraction from Trametes robiniophila and its antioxidant activities[J]. Carbohydrate Polymers, 111(3): 324-332. [31] Xie J, Zhu A B, Wang H X, et al.2021. Huaier extract suppresses non-small cell lung cancer progression through activating NLRP3-dependent pyroptosis[J]. Anatomical Record (Hoboken), 304(2): 291-301. [32] Yao X L, Wu W W, Qu K, et al.2020. Traditional chinese biomedical preparation (Huaier granule) for breast cancer: a PRISMA-compliant meta-analysis[J]. Bioscience Reports, 40(8): 1-18. [33] Yang A L, Fan H, Zhao Y, et al.2019. An immunestimulating proteoglycan from the medicinal mushroom huaier up-regulates NF-kappaB and MAPK signaling via toll-like receptor 4[J]. Journal of Biological Chemistry, 294(8): 2628-2641. [34] Yuan T, Wu J, Zeng L J, et al.2021. Huaier polysaccharides suppress triple-negative breast cancer metastasis and epithelial-mesenchymal transition by inducing autophagic degradation of snail[J]. Cell Bioscience, 11(1): 170. [35] Zhou X B, Zhang Y X, Jiang Y Q, et al.2021. Poria cocos polysaccharide attenuates damage of nervus in Alzheimer's disease rat model induced by D-galactose and aluminum trichloride[J]. Neuroreport, 32(8): 727-737. [36] Zou K, Tang K J, Liang Y, et al.2021. Purification and antioxidant and anti-Inflammatory activity of extracellular polysaccharopeptide from sanghuang mushroom, Sanghuangporus lonicericola[J]. Journal of the Science of Food and Agriculture, 101(3): 1009-1020. [37] Zou Y M, Xiong H, Xiong H H, et al.2015. A polysaccharide from mushroom Huaier retards human hepatocellular carcinoma growth, angiogenesis, and metastasis in nude mice[J]. Tumour Biology, 36(4): 2929-2936. [38] Zhao X K, Ma S, Liu N, et al.2015. A polysaccharide from Trametes robiniophila inhibits human osteosarcoma xenograft tumor growth in vivo[J]. Carbohydrate Polymers, 124(25): 157-163. |
|
|
|