|
|
Characterization of Soil Organic Carbon Fractions Under Different Organic Materials Amendment in Sandy Soil |
HAO Jin-Yu1, CHEN Yuan-Quan1, DAI Hong-Cui2, LI Chao3, XU Jie1, LIU Jin1,*, SUI Peng1,* |
1 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; 2 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; 3 Science and Technology Bureau of Wuqiao County, Cangzhou 061800, China |
|
|
Abstract In recent years, solid-state 13C nuclear magnetic resonance (NMR) technology has become an application hotspot in the research field of soil organic carbon molecular structure. Compared with loam and clay, sandy soil was more sensitive to the feedback mechanism of soil carbon fractions changes. To reveal the effects of soil organic carbon fractions and stability under different external organic carbon input, this study, with straw (ST) returning as the main control and chemical fertilizer (CF) treatment as the secondary control, the effects of the amendment of 3 organic materials for 8 consecutive years on the molecular structure of organic carbon in sandy soil were determined by 13C-NMR technology. Results showed that: 1) Soil organic carbon fractions were predominant as O-alkyl C (45~110 ppm) which was dominated by carbohydrate C (60~90 ppm) in pig manure (PM), biogas residue (BR) and biochar (BC) treatments, similar to that in the 2 control groups. 2) Compared with the ST treatment (main control), the recalcitrant organic carbon (alkyl C and aromatic C) decreased by 2.96% and 3.77% in BR and PM treatments respectively, but increased by 8.12% in BC treatment. Compared with the ST treatment, the Hydrophobicity index (HI) decreased by 4.93% and 6.25% in BR and PM treatments respectively, but increased by 14.65% in BC treatment. The aromaticity of BC treatment was about 1.7 to 2.0 times that of BR and PM treatments. 3) Redundancy analysis showed that the relative proportion of aromatic C significantly impacted the stability indexes and the content of soil organic carbon (P<0.01). Due to the differences in soil organic carbon fractions under the amendment of different organic materials, BR and PM treatments increased the relative proportion of labile organic carbon (carbohydrate C) and carboxylic C, which meant that the stability of soil organic carbon was weakened. BC treatment increased the relative proportion of recalcitrant organic carbon (aromatic C), the effect of improving the stability of soil organic carbon was more significant. The present study could provide insight for further improving the stability of farmland soil organic carbon pool.
|
Received: 18 December 2021
|
|
Corresponding Authors:
* Corresponding authors, suipeng@cau.edu.cn; jliu207@cau.edu.cn
|
|
|
|
[1] 代红翠, 陈源泉, 赵影星, 等. 2016. 不同有机物料还田对华北农田土壤固碳的影响及原因分析[J]. 农业工程学报, 32(S2): 103-110. (Dai H C, Chen Y Q, Zhao Y X, et al.2016. Effects and causes of different organic materials amendment on soil organic carbon in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 32(S2): 103-110.) [2] 郭素春, 郁红艳, 朱雪竹, 等. 2013. 长期施肥对潮土团聚体有机碳分子结构的影响[J]. 土壤学报, 50(5): 922-930. (Guo S C, Yu H Y, Zhu X Z, Gao Y Z, et al.2013. Effect of long-term fertilization on molecular structure of organic carbon in soil aggregates in Fluvo-aquic soil[J]. Acta Pedologica Sinica, 50(5): 922-930.) [3] 韩晓日, 苏俊峰, 谢芳, 等. 2008. 长期施肥对棕壤有机碳及各组分的影响[J]. 土壤通报, 39(4): 730-733. (Han X R, Su J F, Xie F, et al.2008. Effect of long-term fertilization on organic carbon and the different soil organic fractions of brown earth[J]. Chinese Journal of Soil Science, 39(4): 730-733.) [4] 杭子清, 王国祥, 刘金娥, 等. 2014. 互花米草盐沼土壤有机碳库组分及结构特征[J]. 生态学报, 34(15): 4175-4182. (Hang Z Q, Wang G X, Liu J E, et al.2014. Characterization of soil organic carbon fractions at Spartina alterniflora saltmarsh in North Jiangsu[J]. Acta Ecologica Sinica, 34(15): 4175-4182.) [5] 李娜, 盛明, 尤孟阳, 等. 2019. 应用13C核磁共振技术研究土壤有机质化学结构进展[J]. 土壤学报, 56(04): 796-812. (Li N, Sheng M, You M Y, et al.2019. Advancement in research on application of 13C NMR techniques to exploration of chemical structure of soil organic matter[J]. Acta Pedologica Sinica, 56(04): 796-812.) [6] 李振虎. 2021. 有机农业发展中的土壤培肥要点分析[J]. 特种经济动植物, 24(07): 95-96, 98. (Li Z H.2021. Analysis on the key points of soil fertility improvement in the development of organic agriculture[J]. Special Economic Animals and Plants, 24(07): 95-96, 98.) [7] 刘朝阳. 2020. 我国典型农田土壤酶和有机碳分解对升温的响应及机理探究[D]. 博士学位论文, 西北农林科技大学, 导师: 和文祥, pp. 84. (Liu C Y.2020. The response and mechanism of soil enzymes and soil organic carbon decomposition to warming in typical farmland of China[D]. Thesis for Ph.D., Northwest Agriculture and Forestry University, Supervisor: He W X, pp. 84.) [8] 刘燕萍. 2011. 黑碳添加对土壤有机碳分解的影响[D]. 硕士学位论文, 福建师范大学, 导师: 高人, pp. 3-6. (Liu Y P.2011. Effect of black carbon addition on soil organic carbon decomposition[D]. Thesis for M.S., Fujian Normal University, Supervisor: Gao R, pp. 3-6.) [9] 毛霞丽,陆扣萍, 孙涛, 等. 2015. 长期施肥下浙江稻田不同颗粒组分有机碳的稳定特征[J]. 环境科学, 36(5): 1827-1835. (Mao X L, Lu K P, Sun T, et al.2015. Effect of long-term fertilizer application on the stability of organic carbon in particle size fractions of a paddy soil in Zhejiang Province, China[J]. Environmental Science, 36(5): 1827-1835.) [10] 邵满娇. 2018. 连续添加玉米秸秆及其腐解和炭化材料对黑土腐殖质的影响[D]. 硕士学位论文, 吉林农业大学, 导师: 窦森, pp. 21-28. (Shao M J.2018. The effects of the corn straw and its humified and carbonized materials returning to the black soil on the humus[D]. Thesis for M.S., Jilin Agriculture University, Supervisor: Dou S, pp. 21-28.) [11] 盛明, 韩晓增, 龙静泓, 等. 2019. 中国不同地区土壤有机质特征比较研究[J]. 土壤与作物, 8(3): 320-330. (Sheng M, Han X Z, Long J H, et al.2019. Characterization of soil organic matter in different regions of China[J]. Soils and Crops, 8(3): 320-330.) [12] 宋余泽. 2020. 外源碳输入对毛竹林土壤有机碳矿化的影响机制[D]. 硕士学位论文, 浙江农林大学, 导师: 李永夫, pp. 13-17. (Song Y Z.2020. Effects of exogenous carbon input on soil organic carbon mineralization in moso bamboo forest[D]. Thesis for M.S., Zhejiang Agriculture and Forestry University, Supervisor: Li Y F, pp. 13-17.) [13] 孙慧敏, 姜姜, 崔莉娜, 等. 2018. 互花米草入侵对漳江口红树林湿地土壤有机碳官能团特征的影响[J]. 植物生态学报, 42(7): 774-784. (Sun H M, Jiang J, Cui L N, et al.2018. Effects of Spartina alterniflora invasion on soil organic carbon composition of mangrove wetland in Zhangjiang River Estuary[J]. Chinese Journal of Plant Ecology, 42(7): 774-784.) [14] 陶宝先, 张保华, 董杰, 等. 2017. 不同土地利用方式对寿光市农业土壤有机碳分子结构和稳定性的影响[J]. 生态环境学报, 26(10): 1801-1806. (Tao B X, Zhang B H, Dong J, et al.2017. Effects of land use change on the molecular structure and stability of agricultural soil organic carbon in Shouguang City[J]. Ecology and Environmental Sciences, 26(10): 1801-1806.) [15] 陶宝先, 张保华, 董杰, 等. 2019. 有机碳质量对黄河三角洲芦苇凋落物分解及其温度敏感性的影响[J]. 生态学报, 39(15): 5564-5572. (Tao B X, Zhang B H, Dong J, et al.2019. Effect of organic carbon quality on the litter decomposition and temperature sensitivity of Phragmites australi in the Yellow River Delta, China[J]. Acta Ecologica Sinica, 39(15): 5564-5572.) [16] 王学霞, 张磊, 梁丽娜, 等. 2020. 秸秆还田对麦玉系统土壤有机碳稳定性的影响[J]. 农业环境科学学报, 39(08): 1774-1782. (Wang X X, Zhang L, Liang L N, et al.2020. Effects of straw returning on the stability of soil organic carbon in wheat-maize rotation systems[J]. Journal of Agro-Environment Science, 39(08): 1774-1782.) [17] 徐明岗, 于荣, 王伯仁. 2000. 土壤活性有机质的研究进展[J]. 土壤肥料, (6): 3-7. (Xu M G, Yu R, Wang B R. 2000. Progress on the study of soil labile organic matter[J]. Soils and Fertilizers, (6): 3-7.) [18] 杨合法, 解永丽, 范聚芳, 等. 2006. 不同施肥对保护地土壤肥力及作物产量的影响[J]. 中国农学通报, 22(9): 250-254. (Yang H F, Xie Y L, Fan J F, et al.2006. The research of different fertilization impact on soil fertility and yield of crop fruits[J]. Chinese Agricultural Science Bulletin, 22(9): 250-254.) [19] 于维水. 2015. 长期不同施肥下我国四种典型土壤易、耐分解碳氮的组分特征[D]. 硕士学位论文, 中国农业科学院, 导师: 卢昌艾, pp. 1-3. (Yu W S.2015. Component characteristics of soil labile and recalcitrant carbon & nitrogen in four typical soils of China under different long-term fertilization systems[D]. Thesis for M.S., Chinese Academy of Agricultural Sciences, Supervisor: Lu C A, pp. 1-3.) [20] 曾木祥, 王蓉芳, 彭世琪, 等. 2002. 我国主要农区秸秆还田试验总结[J]. 土壤通报, 33(5): 336-339. (Zeng M X, Wang R F, Peng S Q, et al.2002. Summary of returning straw into field of main agricultural areas in China[J]. Chinese Journal of Soil Science, 33(5): 336-339.) [21] 张勇, 胡海波, 黄玉洁, 等. 2015. 不同植被恢复模式对土壤有机碳分子结构及其稳定性的影响[J]. 环境科学研究, 28(12): 1870-1878. (Zhang Y, Hu H B, Huang Y J, et al.2015. Effects of different vegetation restoration models on molecular structure and stability of soil organic carbon[J]. Research of Environmental Sciences, 28(12): 1870-1878.) [22] 赵欣宇. 2016. 不同农业有机废弃物对黑土理化性质及腐殖化特征的影响[D]. 博士学位论文, 吉林农业大学, 导师: 吴景贵, pp. 70-79. (Zhao X Y.2016. Effects of different agriculture organic wastes on physicochemical property and humification of black soil[D]. Thesis for Ph.D., Jilin Agriculture University, Supervisor: Wu J G, pp. 70-79.) [23] 郑殷恬, 赵红, 赵楠, 等. 2011. 黑土、栗钙土和潮土胡敏酸分子结构的差异性分析[J]. 土壤, 43(5): 804-808. (Zheng Y T, Zhao H, Zhao N, et al.2011. Molecular structure differences of humic acid in black soil, Chestnut soil and Fluvo-aquic soil[J]. Soils, 43(5): 804-808.) [24] 周萍, Piccolo A, 潘根兴, 等. 2009. 三种南方典型水稻土长期试验下有机碳积累机制研究Ⅲ.两种水稻土颗粒有机质结构特征的变化[J]. 土壤学报, 46(3): 398-405. (Zhou P, Piccolo A, Pan G X, et al.2009. SOC enhancement in three major typed of paddy soils in a long-term agro-ecosystem experiment in South ChinaⅢ. Structural variation of particulate organic matter of two paddy soils[J]. Acta Pedologica Sinica, 46(3): 398-405.) [25] 周卫军, 王凯荣, 张光远, 等. 2002. 有机与无机肥配合对红壤稻田系统生产力及其土壤肥力的影响[J]. 中国农业科学, 35(9): 1109-1113. (Zhou W J, Wang K R, Zhang G Y, et al.2002. Effects of inorganic-organic fertilizer incorporation on productivity and soil fertility of rice cropping system in red soil area of China[J]. Scientia Agricultura Sinica, 35(9): 1109-1113.) [26] 卓苏能, 文启孝. 1994. 核磁共振技术在土壤有机质研究中应用的新进展[J]. 土壤学进展, 22(5): 46-52. (Zhuo S N, Wen Q X.1994. New advances in applying Nuclear Magnetic Resonance Spectroscopy in soil organic matter[J]. Progress in Soil Science, 22(5): 46-52.) [27] Baldock J A, Masiello C A, Gelinas Y, et al.2004. Cycling and composition of organic matter in terrestrial and marine ecosystems[J]. Marine Chemistry, 92(1/4): 39-64. [28] Batjes N H.1996. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 47(2): 151-163. [29] Cheng C H, Lehmann J, Engelhard M H.2008. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence[J]. Geoehimicaet Cosmochimica Acta, 72(6): 1598-1610. [30] Dai H C, Chen Y Q, Yang X L, et al.2017. The effect of different organic materials amendment on soil bacteria communities in barren sandy loam soil[J]. Environmental Science and Pollution Research, 24(14): 24019-24028. [31] Dai H C, Zang H D, Zhao Y X, et al.2019. Linking bacterial community to aggregate fractions with organic amendments in a sandy soil[J]. Land Degradation and Development, 30(15): 1828-1839. [32] Fagbohungbe M O, Dodd I C, Herbert B M, et al.2015. High solid anaerobic digestion: Operational challenges and possibilities[J]. Environmental Technology and Innovation, 4: 268-284. [33] Fontaine S, Barot S, P Barré, et al.2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature, 450(7167): 277-280. [34] Kögel-Knabner I.1997. 13C and 15N NMR spectroscopy as a tool in soil organic matter studies[J]. Geoderma, 80(3-4): 243-270. [35] Kögel-Knabner I.2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter[J]. Soil Biology and Biochemistry, 34(2): 139-162. [36] Liu X, Herbert S J, Hashemi A M, et al.2006. Effects of agricultural management on soil organic matter and carbon transformation - a review[J]. Plant Soil and Environment, 52(12): 531-543. [37] Mahieu N, Powlson D S, Randall E W.1999. Statistical analysis of published carbon-13 CPMAS NMR spectra of soil organic matter[J]. Soil Science Society of American Journal, 63(2): 307-319. [38] Mastrolonardo G, Rumpel C, Forte C, et al.2015. Abundance and composition of free and aggregate-occluded carbohydrates and lignin in two forest soils as affected by wildfires of different severity[J]. Geoderma, 245: 40-51. [39] Mathers N J, Xu Z.2003. Solid-state 13C NMR spectroscopy: Characterization of soil organic matter under two contrasting residue management regimes in a 2-year-old pine plantation of subtropical Australia[J]. Geoderma, 114(1): 19-31. [40] Quideau S A, Anderson M A, Graham R C, et al.2000. Soil organic matter processes: Characterization by 13C NMR and 14C measurements[J]. Forest Ecology and Management, 138(1/3): 19-27. [41] Six J, Elliott E T, Paustian K, et al.1998. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 62(5): 1367-1376. [42] Walkley A, Black I A.1934. An examination of the Degjareff method for determining soil organic matter and a proposed modification of the cromi acid titration method[J]. Soil Science, 37(1): 29-38. [43] Wilson M A, Pugmire R J, Zilm K W, et al.1981. Cross polarization 13C-NMR spectroscopy with 'magic angle' spinning characterizes organic matter in whole soils[J]. Nature, 294(5842): 648-650. [44] Yu H Y, Ding W X, Luo J F, et al.2012. Long-term effect of compost and inorganic fertilizer on activities of carbon-cycle enzymes in aggregates of an intensively cultivated sandy loam[J]. Soil Use and Management, 28(3): 347-360. [45] Zhang J J, Dou S, Song X Y.2009. Effect of long-term combined nitrogen and phosphorus fertilizer application on 13C CPMAS NMR spectra of humin in a Typic Hapludoll of northeast China[J]. European Journal of Soil Science, 60(6): 966-973. [46] Zhao Y X, Chen Y Q, Dai H C, et al.2021. Effects of organic amendments on the improvement of soil nutrients and crop yield in sandy soils during a 4-year field experiment in Huang-Huai-Hai plain, Northern China[J]. Agronomy, 11(1): 157. |
|
|
|