|
|
Studies on Resistance of Transgenic cry1A. 301 Maize (Zea mays) to Major Lepidopteran Pests |
YANG Xiao-Yan1, WANG Yun-He2, WENG Jian-Feng3, WU Hong1, HAN Yao1, LEI Kai-Rong1, XIE Shu-Zhang1* |
1 Chongqing Key Laboratory of Adversity Agriculture Research, Institute of Biotechnology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China;
2 College of Agriculture, Northeast Agricultural University, Harbin 150030, China;
3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China |
|
|
Abstract Ostrinia furnacalis, Mythimna separata and Helicoverpa armigera are the main lepidopteran pests to corn. In order to assess the resistance of transgenic cry1A. 301 maize to these insect pests, two events of CM8201 and CM8204 were evaluated through in vitro tissues laboratory bioassay and artificial infestation in field trials. The results of laboratory bioassay showed that the larval mortality rate of O. furnacalis, M. separate and H. armigera was above 95% when the larvae fed on the heart leaves, silks and grains of CM8201 and CM8204 after 5 d. Hence, the heart leaves, silks and grains of CM8201 and CM8204 showed high resistance to these pests. The results of insect identification on field showed that at whorl stage, as far as the resistance to O. furnacalis be concerned, the mean values of feeding grade of CM8201 and CM8204 were 1.17 and 1.18, respectively. The pest grade was 1. The resistance level was high. As far as the resistance to M. separate be concerned, the mean values of feeding grade of CM8201 and CM8204 were 1.38 and 1.35, respectively, and the resistance type was high. At silking stage, as far as the resistance to O. furnacalis be concerned, the average damage level of female ear of CM8201 and CM8204 was 1.27 and 1.30, respectively. As far as the resistance to H. armigera be concerned, the average damage level of female ear was 0.15 and 0.20, respectively. In conclusion, the transgenic insect-resistant maize CM8201 and CM8204 showed good insecticidal effects against 3 major maize lepidopteran pests at all stages of maize growth. This study provides material basis for the breeding of new insect-resistant transgenic maize varieties.
|
Received: 05 October 2021
|
|
Corresponding Authors:
*nicofree0214@163.com
|
|
|
|
[1] 常雪, 常雪艳, 何康来, 等 . 2007. 转 cry1Ab 基因玉米对粘虫的抗性评价[J]. 植物保护学报 , 34(03): 225-228.
(Chang X, Chang X Y, He K L, et al.2007. Resistance evaluation of transgenic bt maize to oriental armyworm[J]. Acta Phytophylacica Sinica, 34(03): 225-228.)
[2] 常雪, 王伟, 沈志成, 等 . 2013. 转 cry1Ab/cry2Aj 玉米对亚洲玉米螟的抗性评价[J]. 植物保护学报, 40(4): 339-344.
(Chang X, Wang W, Shen Z C, et al.2013. Evaluation of transgenic cry1Ab/cry2Aj maize for its resistance to Os-trinia furnacalis[J]. Acta Phytophylacica Sinica, 40(4): 339-344.)
[3] 常雪, 王伟, 沈志成, 等 . 2016. 转 cry1Ab/cry2Aj、cry1Ab/vip3DA 玉米对棉铃虫、甜菜夜蛾和斜纹夜蛾的抗虫性评价[J]. 植物保护学报 , 43(6): 951-957.
(Chang X,Wang W, Shen Z C, et al.2016. Evaluation of transgenic cry1Ab/cry2Aj and cry1Ab/vip3DA maize events for their resistance to Helicoverpa armigera, Spodoptera exigua and Prodenia litura[J]. Acta Phytophylacica Sinica, 43(6): 951-957.)
[4] 常雪艳, 何康来, 王振营, 等 . 2006. 转 Bt 基因玉米对棉铃虫的抗性评价[J]. 植物保护学报, 33(4): 374-378.
(Chang X Y, He K L, Wang Z Y, et al.2006. Evaluation of trans‐ genic Bt maize for resistance to cotton ballworm[J]. Ac‐ ta Phytophylacica Sinica, 33(4): 374-378.)
[5] 崔爱民, 张久刚, 张虎, 等 . 2009. 我国玉米生产现状及发展变革[J]. 中国农业科技导报 , 22(7): 10-19.
(Cui A M, Zhang J G, Zhang H, et al.2009. Preliminary explora‐ tion on current situation and development of maize pro‐ duction in China[J]. Journal of Agricultural Science and Technology, 22(07): 10-19.)
[6] 崔金杰, 李文龙, 吴孔明, 等 . 2013. 转基因植物及其产品环境安全检测抗虫棉花第 1 部分: 对靶标害虫的抗虫性[S]. 北京: 中华人民共和国农业部 .(Cui J J, Li W L, Wu K M, et al. 2007. Evaluation of environmental impact of genetically codified plants and it's derived products. In‐ sect-resistant cotton. Part 1: Evaluation of insect pest re‐ sistance[S]. Beijing: Ministry of Agriculture, PRC.
[7] 高越 .2020. 转 cry1Ab 基因玉米对非靶标节肢动物多样性的影响及抗虫性的评价[D]. 硕士学位论文, 河北农业大学, 导师: 王勤英, 王永, pp. 9-37.
(Gao Y.2020. Evalua‐ tion of transgenic cry1Ab maize on effect of diversity of non-target arthropods and insect-resistance[D]. Thesis for M. S., Hebei Agriculture University, Supervisor: Wang Q Y, Wang Y, pp. 9-37.)
[8] 焦悦, 韩宇, 杨桥, 等 . 2021. 全球转基因玉米商业化发展态势概述及启示[J]. 生物技术通报, 37(4): 164-176.
(Jiao Y, Han Y, Yang J, et al.2021. Commercialization devel‐ opment trend of genetically modified maize and the en‐ lightenment[J]. Biotechnology Bulletin, 37(4): 164-176.)
[9] 李国平, 刘冰, 黄建荣, 等 . 2019. 转聚合 cry1A.105、cry2Ab2 和 cp4epsps 基因抗虫耐除草剂玉米的田间抗性评价[J]. 植物保护, 45(1): 142-147.
(Li G P, Liu B, Huang J R, et al.2019. Field evaluation of Bt corn expressing cry1A. 105+cry2Ab2+cp4epsps against Lepidoptera pests and tolerance to glyphosate[J]. Plant Protection, 45(1):142-147.)
[10] 李新海, 翁建峰, 杨小艳, 等 . 2013. 一种抗虫蛋白Cry1A. 301、其表达载体及应用 [P]. 中国 , ZL 2012 10048871.1. (Li X H, Weng J F, Yang X Y, et al. 2013. An anti-insect protein cry1A. 301, its expression vector and application [P]. China, ZL 2012 1 0048871.1.)
[11] 黎裕, 王天宇 . 2018. 玉米转基因技术研发与应用现状及展望[J]. 玉米科学 , 26(2): 1-15, 22.(Li Y, Wang T Y. 2018. Germplasm enhancement in maize: Advances and pros‐pects[J]. Journal of Maize Sciences, 26(2): 1-15, 22.)
[12] 梁晋刚, 张旭冬, 毕研哲, 等 . 2021. 转基因抗虫玉米发展现状与展望[J]. 中国生物工程杂志 , 41(6): 98-104.
(Li‐ ang J G, Zhang X D, Bi Y Z, et al.2021. Development status and prospect of genetically modified insect-resis‐ tant maize[J]. China Biotechnology, 41(6): 98-104.)
[13] 刘臣, 陈琳, 王冰洁, 等 . 2017. 四种 Bt 蛋白对六种重要鳞翅目害虫的杀虫活性评价[J]. 中国生物防治学报, 33(6):774-779.
(Liu C, Chen L, Wang B J, et al.2017. Insecti‐ cidal activity of four different Bt toxins against six im‐ portant lepidopteran pests[J]. Chinese Journal of Biolog‐ ical Control, 33(6): 774-779.)
[14] 刘杰, 杨俊杰, 张智, 等 . 2020. 2018 年我国黏虫发生特点分析[J]. 植物保护 , 46(1): 229-233.
(Liu J, Yang J J, Zhang Z, et al.2020. Analysis on occurrence characteris‐ tics of Mythimna separate (Walker) in 2018[J]. Plant Pro‐ tection, 46(1): 229-233.)
[15] 宋苗, 汪海, 张杰, 等 . 2016. 转 Bt cry1Ah 基因抗虫玉米对亚洲玉米螟、棉铃虫和黏虫的抗性评价[J]. 生物技术通报 , 32(6): 69-75.
(Song M, Wang H, Zhang J, et al.2016. Resistance evaluation of Bt cry1Ah-transgenic maize to Asian corn borer, Cotton bollworm and Orien‐ tal armyworm[J]. Biotechnology Bulletin, 32(6): 69-75.)
[16] 孙红炜, 李凡, 高瑞, 等 . 2018. 转 cry1Ab/cry2Aj 和 G10evo-epsps基因玉米中 Bt 蛋白的时空表达及抗性评价[J]. 生物安全学报, 27(1): 63-68.
(Sun H W, Li F, Gao R, et al.2018. Bt protein spatial-temporal expression and evaluation for re‐ sistance of transgenic cry1Ab/cry2Aj and G10evo-epsps maize[J]. Journal of Biosafety, 27(1): 63-68.)
[17] 孙红炜, 徐晓辉, 李凡, 等 . 2021. 转基因玉米双抗 12-5-21 的抗虫性及对草甘膦的耐受性[J]. 生物安全学报, 30(1):43-49.
(Sun H W, Xu X H, Li F, et al.2021. Insect resis‐ tance and tolerance to the target herbicide of the trans‐ genic maize cultivar Shuangkang 12-5-21[J]. Journal of Biosafety, 30(1): 43-49.)
[18] 孙嵬, 程志加, 赫思聪, 等 . 2020. 吉林省中西部棉铃虫发生规律及虫源分析[J]. 植物保护 , 46(1): 234-238.
(Sun W, Chen Z J, Hao S C, et al.2020. Occurrence and re‐ source of Helicoverpa armigera (Hübner) in Midwest of Jilin province[J]. Plant Protection, 46(1): 234-238.)
[19] 王慧, 杨小艳, 翁建峰, 等 . 2014. 抗玉米螟基因 Cry1A.301 原核表达和玉米遗传转化[J]. 作物杂志 , 4(2): 34-38.
(Wang H, Yang X Y, Weng J F, et al.2014. Prokaryotic expression and genetic transformation of Corn borer re‐ sistance gene Cry1A.301 in maize[J]. Crops, 4(2): 34-38.)
[20] 王琦琪, 陈印军 . 2018. 我国玉米种植的优势分析[J]. 中国农业科技导报 , 20(3): 1-9.
(Wang Q Q, Chen Y J.2018. Advantages analysis of corn planting in China[J]. Jour‐ nal of Agricultural Science and Technology, 20(3): 1-9.)
[21] 王晓鸣, 戴法超, 朱振东, 等 . 2006. 玉米抗病虫性鉴定技术规范第 5 部分 :玉米抗玉米螟鉴定技术规范[S]. 北京: 中华人民共和国农业部 .(Wang X O, Dai F C, Zhu Z D, et al. 2006. Rules for evaluation of maize for resis‐ tance to pests Part 5: Rule for evaluation of maize for re‐ sistance to Asian corn borer[S]. Beijing: Ministry of Ag‐ riculture, PRC.)
[22] 王振营, 刘信, 彭于发, 等 . 2007. 转基因植物及其产品环境安全检测抗虫玉米第 1 部分: 抗虫性[S]. 北京: 中华人民共和国农业部 .(Wang Z Y, Liu X, Peng Y F, et al. 2007. Evaluation of environmental impact of genetically modified plants and its derived products Insect-resistant maize. Part 1: Evaluation of insect pests resistance[S]. Beijing: Ministry of Agriculture, PRC.)
[23] 魏铁松, 朱维芳, 庞民好, 等 . 2013. 棉铃虫和玉米螟危害对玉米穗腐病的影响[J]. 玉米科学, 21(4): 116-118, 123.(Wei T S, Zhu W F, Pang M H, et al. 2013. Influence of the damage of cotton bollworm and corn borer to Ear Rot in corn[J]. Journal of Maize Sciences, 21(4): 116-118, 123.)
[24] 武奉慈, 翁建峰, 李新海, 等 . 2020. 转 Cry1Ab-ma 基因玉米 CM8101 对草地贪夜蛾 1 龄和 2 龄幼虫的抗性[J]. 植物保护学报, 47(4): 815-821.
(Wu F C, Weng J F, Li X H, et al.2020. Resistance of transgenic maize CM8101 with Cry1Ab-ma gene against the 1st and 2nd instar lar‐ vae of fall armyworm Spodoptera frugiperda[J]. Journal of Plant Protection, 47(4): 815-821.)
[25] 徐晓丽, 姜媛媛, 王鹏飞,等 . 2020. 表达 Cry1Ab 和 Cry2Ab 蛋白的转基因玉米 GAB-3 对四种主要鳞翅目害虫的抗性评价[J]. 中国农业科技导报, 22(12): 97-104.
(Xu X L, Jiang Y Y, Wang P F, et al.2020. Resistance evalua‐ tion of genetically modified maize GAB-3 expressing Cry1Ab and Cry2Ab against four major lepidopteran pests[J]. Journal of Agricultural Science and Technolo‐ gy, 22(12): 97-104.)
[26] 岳琳, 李楠, 王阳, 等 . 2015. 分子改造 cryNAc 基因的转基因水稻创制及其功能评价[J]. 生物技术进展, 5(6): 429-435.
(Yu L, Li N, Wang Y, et al.2015. Genetic transfor‐ mation and biological function evaluation of artificial modification cryNAc in Rice[J]. Current Biotechnology,5(6): 429-435.)
[27] 岳润清, 刘璐, 铁双贵, 等 . 2021. 转 Cry1Ab-t 基因玉米YA108 的获得及其抗虫性鉴定[J]. 华北农学报, 36(2):
1)212-218. (Yue R Q, Liu L, Tie S G, et al.2021. Acquire‐ ment and bioassay of transgenic insect-resistant Cry1Ab- t gene maize YA108[J]. Acta Agriculturae Boreali-Sini‐ ca, 36(2): 212-218.)
[28] 张爽, 鲁鑫, 张嘉月, 等 . 2020. 转 Cry1Ab-Ma 基因玉米CM8101 对亚洲玉米螟抗性研究[J]. 玉米科学, 28(1): 59-64.
(Zhang S, Lu X, Zhang J Y, et al.2020. Efficacy evaluation of transgenic Cry1Ab-Ma maize CM8101 for resistance to the Ostrinia furnacalis[J]. Journal of Maize Sciences, 28(1): 59-64.)
[29] 张洋 .2020. 重庆地区玉米螟高效药剂及助剂筛选与防治指标研究[D]. 硕士学位论文, 西南大学, 导师: 王梓英, pp. 21-23.
(Zhang Y.2020. Screening efficient pesti‐ cides and adjuvants and control index of Asian Corn Borer in Chongqing area[D]. Thesis for M.S., Southwest University, Supervisor: Wang Z Y, pp. 21-23.)
[30] Clive J.2014. 2013 年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志 , 2014, 34(1): 1-8.
(Clive J.2014. Global status of commercialized biotech/GM crops: 2013[J]. China Biotechnology, 34(1): 1-8.)
[31] de Maagd, R. A., M. S. G. Kwa, H. van der Klei, et al.1996. Do‐ main III substitution in Bacillus thuringiensis delta-endotox‐ in Cry1A(b) results in superior toxicity for Spodoptera ex-igua and altered membrane protein recognition[J]. Applied and Environmental Microbiology, 62(5): 1537-1543.
[32] de Maagd R A, Mieke W H, Willem S, et al.2000. Bacillus thuringiensis delta-endotoxin Cry1C domain Ⅲ can func‐ tion as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids[J]. Applied and Environmental Microbiology, 66(4): 1559-1563.
[33] Huang F, Qureshi J A, Meagher R L, et al.2014. Cry1F resistance in Fall Armyworm Spodoptera frugiperda: Single gene ver‐ sus pyramided Bt maize[J]. PLOS ONE, 9(11): e112958.
[34] Rang C, Vachon V, Coux F, et al.2001. Exchange of domain Ifrom Bacillus thuringiensis Cry1 toxins influences pro‐ toxin stability and crystal formation[J]. Current Microbi‐ ology, 43(1): 1-6.
[35] Soberón M, Gao Y L, Bravo A.2015. Bt Resistance: Charac‐ terization and Strategies for GM Crops Producing Bacil-lus thuringiensis Toxins[M]. CPI Group (UK) Ltd, Croy don. pp. 178-179.
[36] Wei J Z, Liang G M, Wang B J, et al.2016. Activation of Bt protoxin Cry1Ac in resistant and susceptible cotton boll‐ worm[J]. PLOS ONE, 11(6): e0156560. |
|
|
|