|
|
Effects of Lactic Acid Bacteria on Intestinal Microflora and Growth Performance of Hybrid Snakehead (Channa argus (♀) × Channa maculata (♂)) |
OU Mi1, XU Sheng-Yun1,2, CHEN Kun-Ci1,2, LUO Qing1, LIU Hai-Yang1, LIANG Xin-Qiu1, ZHAO Jian1,2,* |
1 Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; 2 College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China |
|
|
Abstract Channa are economically important freshwater fish, high-density and intensive culture have led to the deterioration of its breeding environment and frequent diseases, which greatly hinders the development of snakehead breeding industry. To study the effects of lactic acid bacteria (LAB) on growth performance and intestinal microflora of hybrid snakehead (Channa argus (♀) × Channa maculata (♂)), the fish in experimental group (QXSY group) were fed in the basal diet supplemented with LAB, while those in control group (DZ group) were fed in the basal diet. The intestines and their contents were collected from DZ and QXSY groups on 0, 26, 60 and 73 d, respectively, for high-throughput sequencing to detect the intestinal microbial structure. At the same time, 90 fish were randomly sampled from each group to measure body length and weight at each sampling, and the feed consumption, morbidity and the rate of surviving fish were recorded. The results showed that the diversity of intestinal microflora in hybrid snakehead could be changed by supplementing LAB The diversity of intestinal microflora in QXSY3 group (the experimental group was sampled on the 60th day) was higher than that in DZ3 group (the control group was sampled on the 60th day), while there was no significant difference in Lactobacillus content between the two groups. Lactobacillus content in QXSY4 group the experimental group was sampled on the 73rd day) was much higher than that in DZ4 group (the control group was sampled on the 73rd day), at the same time, the diversity of intestinal microflora in QXSY4 group was lower than that in DZ4 group, indicating that LAB 'settled' and became the dominant microflora. Some bacterial communities also changed with supplement of LAB, Cetobacterium and Lactobacillus in DZ and QXSY group showed an opposite trend. At the end of the experiment, the growth rate of QXSY group was higher than that of DZ group by (12.0±2.3)%, and the feed coefficient of QXSY group (1.02) was lower than that of DZ group (1.13). The results showed that LAB in the feed of hybrid snakehead could improve the community structure of intestinal bacterial, increase the number of potential probiotics, reduce the number of potential harmful bacteria, optimize the intestinal environment of hybrid snakehead. This research provides a theoretical basis for the application of LAB in the healthy breeding of hybrid snakehead.
|
Received: 08 April 2021
|
|
Corresponding Authors:
*zhaojian@prfri.ac.cn
|
|
|
|
[1] 陈营, 王福强, 邵占涛, 等. 2006. 乳酸菌对牙鲆稚鱼养殖水体和肠道菌群的影响[J]. 海洋水产研究, 27(3): 37-41. (Chen Y, Wang F Q, Shao Z T, et al.2006. Effects of lactic acid bacteria on the microflora in water and larvae guts of Japanese flounder (Paralichthys olivaceus)[J]. Marine Fisheries Research, 27(3): 37-41.) [2] 方卉, 陈友明, 赵雯莹, 等. 2019. 隐蔽所对不同生长阶段克氏原螯虾生长的影响[J]. 水产科学, 38(04): 533-538. (Fang P, Chen Y M, Zhao W Y, et al.2019. Effect of shelters on red swamp crayfish Procambarus clarkii at different growth stages[J]. Fisheries Science, 38(04): 533-538.) [3] 高鹏飞, 张善亭, 赵树平, 等. 2014. 乳酸菌在水产养殖业中的应用[J]. 家畜生态学报, 35(7): 82-86. (Gao P F, Zhang S T, Zhao S P, et al.2014. The application of lactic acids bacteria in animal breeders[J]. Journal of Domestic Animal Ecology, 7: 82-86.) [4] 何伟聪. 2015. 二种益生菌对军曹鱼幼鱼生长性能、免疫酶和消化酶活性、肠道菌群结构及TLR9基因表达量的影响[D]. 硕士学位论文, 广东海洋大学, 导师: 董晓慧, pp. 31-54. (He W C.2015. Effect of two probiotics on the growth performance, immune enzymes, digestive enzymes, intestinal microflora and TLR9 gene expression in tissues of juvenile cobia (Rachycentron canadum)[D]. Thesis for M.S., Guangdong Ocean University, Suppervisor: Dong X H, pp. 31-54.) [5] 李焕宇, 付婷婷, 张云, 等. 2017. 5种方法提取真菌基因组DNA作为PCR模板效果的比较[J]. 中国农学通报, 33(16): 28-35. (Li H Y, Fu T T, Zhang Y, et al.2017. Effect comparison of five methods to extract fungal genomic DNA as PCR templates[J]. Chinese Agricultural Science Bulletin, 33(16): 28-35.) [6] 李建柱, 侯杰, 张鹏飞, 等. 2016. 鱼菜共生模式中不同鱼类肠道微生物群落结构的比较[J]. 南方水产科学, 12(006): 42-50. (Li J Z, Hou J, Zhang P F, et al.2016. Comparative study of intestinal microbial community structure in different species of carp in aquaponics system[J]. South China Fisheries Science, 12(006): 42-50.) [7] 李敏芬, 罗青, 赵建, 等. 2016. 低温胁迫对乌鳢, 斑鳢及其杂种血清生化指标的影响[J]. 基因组学与应用生物学, 035(011): 3007-3017. (Li M F, Luo Q, Zhao J, et al.2016. Effects of low-temperature stress on serum biochemical indexes in Channa argus, Channa maculata and their hybrids[J]. Genomics & Applied Biology, 035(011): 3007-3017.) [8] 李卫芬, 沈涛, 陈南南, 等. 2012. 饲料中添加枯草芽孢杆菌对草鱼消化酶活性和肠道菌群的影响[J]. 大连海洋学报, 27(3): 221-225. (Li W F, Shen T, Chen N N, et al.2012. Effects of dietary Bacillus subtilis on digestive enzyme activity and intestinal microflora in grass carp Ctenopharyngodon idellus[J]. Journal of Dalian Ocean University, 27(3): 221-225.) [9] 林艾影, 王维政, 陈刚, 等. 2020. 2种乳酸菌对军曹鱼幼鱼生长及消化酶, 免疫酶活性的影响[J]. 广东海洋大学学报, 5(40): 112-117. (Lin A Y, Wang W Z, Chen G, et al.2020. Effects of two lactic acid bacteria on growth performance and activities of digestive and non-specific immune enzymes of juvenile Cobia (Rachycentron canadum)[J]. Journal of Guangdong Ocean University, 5(40): 112-117.) [10] 刘富聪, 王昆峰, 刘猛, 等. 2019. 饲料中添加乳酸菌对斑点叉尾鮰苗种生长和水质的影响[J]. 科学养鱼, 9: 72-73. (Liu F C, Wang K F, Liu M, et al.2019. Effects of lactic acid bacteria on growth and water quality of channel catfish (Ictalurus punctatus)[J]. Scientific Fish Farming, 9: 72-73.) [11] 刘小玲, 曹俊明, 邝哲师, 等. 2013. 嗜酸乳酸菌对吉富罗非鱼生长、非特异性免疫酶活性和肠道菌群的影响[J]. 广东农业科学, 1: 123-126. (Liu X L, Cao J M, Kuang Z S, et al.2013. Effect of dietary Lactobacillus on growth performance, non-specific immune enzymes activities and intestinal microflora of Oreochromis niloticus[J]. Guangdong Agricultural Sciences, 1: 123-126.) [12] 刘增新, 柳学周, 史宝, 等. 2017. 牙鲆(Paralichthys olivaceus)仔稚幼鱼肠道菌群结构比较分析[J]. 渔业科学进展, 38(1): 111-119. (Liu Z X, Liu X Z, Shi B, et al.2017. Composition of intestinal bacterial community of Japanese flounder (Paralichthys olivaceus) during early life stages[J]. Progress in Fishery Sciences, 38(1): 111-119.) [13] 陆丙乾. 2017. 在杂交鳢养殖中四种益生菌的混合使用对水质和生长的影响[D]. 硕士学位论文, 华南农业大学, 导师: 刘丽, pp. 5-8. (Lu B Q.2017. Effects of four probiotics on water quality and growth of hybrid snakehead (Channa maculata ♀×C. argus ♂)[D]. Thesis for M.S., South China Agricultural University, Suppervisor: Liu L, pp. 5-8.) [14] 马小康, 吴小嫚, 胡乐琴. 2018. 2种活菌饲料对金鲫幼鱼肠道及水体微生态的影响[J]. 水产科学, 37(03): 30-37. (Ma X K, Wu X M, Hu Y Q.2018. Effects of two species of dietary viable bacteria on microbiota in water and intestinal of juvenile red crucian carp Carassius auratus[J]. Fisheries Science, 37(03): 30-37.) [15] 滕涛, 梁利国, 谢骏, 等. 2016. 团头鲂源肺炎克雷伯氏菌的分离鉴定[J]. 水生态学杂志, 37(06): 95-100. (Teng T, Liang L G, Xie J, et al.2016. Isolation and identification of pathogenic Klebsiella pneumoniae from Megalobrama amhlycephala[J]. Journal of Hydroecology, 37(06): 95-100.) [16] 王继隆, 刘伟, 唐富江, 等. 2013. 乌苏里江大麻哈鱼年龄结构及异龄组间生长差异[J]. 上海海洋大学学报, 22(01): 88-92. (Wang J L, Liu W, Tang F J, et al.2013. Age composition and growth difference of chum salmon migrating to Ussuri River[J]. Journal of Shanghai Ocean University, 22(1): 88-92.) [17] 许禔森. 2008. 短乳酸杆菌对草鱼幼鱼养殖水体和肠道菌群的影响[J]. 德州学院学报, 24(2): 60-63. (Xu Z S.2008. Effects of Lactobacillus brevie on the microflora in water and larvae guts of grass carp[J]. Journal of Dezhou University, 24(2): 60-63.) [18] 尹军霞, 陈瑛, 孟丽丽. 2007. 益生菌剂对鲫鱼肠道菌群影响的初步研究[J]. 水产科学, 26(11): 610-612. (Yin J X, Chen Y, Meng L L.2007. The influences of probiotics on intestinal microflora in crucian carp (Carassius auratus)[J]. Fisheries Science, 26(11): 610-612.) [19] 翟万营, 郭安宁. 2016. 鱼类肠道微生物研究进展[J]. 河南水产, 000(004): 18-21. (Zhai W Y, Guo A N.2016. Research progress on the fish intestinal microbiota[J]. Henan Fisheries, 000(004): 18-21.) [20] 曾地刚, 雷爱莹. 2011. 乳酸杆菌对罗非鱼生长和抗病力的影响[J]. 南方农业学报, 42(3): 328-331. (Zeng D G, Lei A Y.2011. Effect of Lactobacillus supplementation on growth and disease resistance in tilapia[J]. Journal of Southern Agriculture, 42(3): 328-331.) [21] 张美玲, 单承杰, 杜震宇. 202. 益生菌与鱼类肠道健康研究进展[J]. 水产学报, 45(1): 147-157. (Zhang M L, Shan C J, Du Z Y.2020. Research advances on probiotics and fish gut health[J]. Journal of Fisheris of China, 45(1): 147-157.) [22] 张明洋. 2019. 类志贺邻单胞菌感染对鲟转录组及其肠道菌群的影响[D]. 硕士学位论文, 贵州大学, 导师: 文明, pp. 8-13. (Zhang M Y.2019. Effects of Plesimonas shigelloides infection on transcriptome and gut microbiota of sturgeons[D]. Thesis for M.S., Guizhou University, Suppervisor: Wen M, pp. 8-13.) [23] 张雯, 钟雷, 李南充, 等. 2015. 微生态制剂对池养建鲤体成分, 血清指标, 消化酶活性以及肠道菌群组成的影响[J]. 水产科学, 34(012): 741-749. (Zhang W, Zhong L, Li N C, et al.2015. Effects of probiotics on body composition, serum biochemical parameters, digestive enzyme activity and intestinal flora of juvenile Jian Carp (Cyprinus carpio Var. Jian)[J]. Fisheries Science, 34(012): 741-749.) [24] 周晓波, 黄燕华, 曹俊明, 等. 2014. 5种乳酸菌对罗非鱼生长性能、体成分、血清生化指标及肠道菌群的影响[J]. 动物营养学报, 26(7): 2009-2017. (Zhou X B, Huang Y H, Cao J M, et al.2014. Effects of 5 kinds of Lactobacillus on growth performance, body composition, serum biochemical indices and intestinal microflora of Tilapia (Oreochromis niloticus×O. aureu)[J]. Chinese Journal of Animal Nutrition, 7: 2009-2017.) [25] Eddy S D, Jones S H.2002. Microbiology of summer flounder Paralichthys dentatus fingerling production at a marine fish hatchery[J]. Aquaculture, 211(1): 9-28. [26] Edgar R C.2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Natural Methods, 10(10): 996-998. [27] Hamer H M, Jonkers D, Bast A, et al.2009. Butyrate modulates oxidative stress in the colonic mucosa of healthy humans[J]. Clinical Nutrition, 28(1): 88-93. [28] Kim D H, Brunt J, Austin B.2007. Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss)[J]. Journal of Applied Microbiology, 102(6): 1654-1664. [29] Larsen A M, Mohammed H H, Arias C R.2014. Characterization of the gut microbiota of three commercially valuable warmwater fish species[J]. Journal of Applied Microbiology, 116(6): 1396-1404. [30] Merrifield D L, Burnard D, Bradley G, et al.2009. Microbial community diversity associated with the intestinal mucosa of farmed rainbow trout (Oncoryhnchus mykiss Walbaum)[J]. Aquaculture Research, 40(9): 1064-1072. [31] Ou M, Zhao J, Luo Q, et al.2018. Characteristics of hybrids derived from Channa argus ♀×Channa maculata[J]. Aquaculture, 492: 349-356. [32] Schloss P D, Westcott S L, Ryabin T, et al.2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 75(23): 7537-7541. [33] Suzer C, Coban D, Kamaci H O, et al.2008. Lactobacillus bacteria as probiotics in gilthead sea bream (Sparus aurata) larvae: Effects on growth performance and digestive enzyme activities[J]. Aquaculture, 280(1/4): 140-145. [34] Zhao J, Ou M, Wang Y P, et al.2021. Breeding of YY super-male of blotched snakehead (Channa maculata) and production of all-male hybrid (Channa argus ♀×C. maculata ♂)[J]. Aquaculture, 538: 736450. |
[1] |
SUN Kang-Yong-Jie, YANG Yu-Ze, WEI Ya-Qin, WAN Xue-Rui, ZHANG Zhao, MA Chun-Juan, CAO Lei, ZOU Ai-Ai, WANG Chuan. Expression of Cellobiohydrolase Gene (cbh) from Cattle (Bos taurus domestica) Rumen Microbes in Lactic Acid Bacteria (Lactococcus lactis)[J]. 农业生物技术学报, 2021, 29(12): 2375-2386. |
|
|
|
|