|
|
Research Progress of LAMP Amplicons Detection Method and the Application of Gene Editing Technology |
BAI Rong, BAI Lin-Lin, WANG Shao-Yun, ZHANG Fang* |
Fujian Key Laboratory of Inspection and Quarantine Technology Research, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China |
|
|
Abstract With the rapid development of isothermalamplification technology, the method to detect amplicons has become the key restricting its rapid popularization and application. Given the characteristics of Loop-mediated isothermal amplification(LAMP) reaction and the current amplicons detection methods, we summarized the progresses which have been made in recent years, including methods based on by-product generation analysis, methods aiming for multiplex detection, and the sequence-specific ones with visual readouts (e.g. CRISPR/Cas based ones). The possible opportunities and challenges are also been discussed. This review provides support for the nucleic acid analysis industry and applications based on nucleic acid amplification.
|
Received: 01 February 2021
|
|
Corresponding Authors:
* fangzh921@fzu.edu.cn
|
|
|
|
[1] Abudayyeh O O, Gootenberg J S, Konermann S, et al.2016. C2c2 is a single-component programmableRNA-guided RNA-targeting CRISPR effector[J].Science, 353(6299): aaf5573. [2] Ali S A, Kaur G, Boby N, et al.2017. Rapid and visual detection of Leptospira in urine by LigB-LAMP assay with pre-addition of dye[J].Molecular and Cellular Probes, 36: 29-35. [3] Almasi A, Sharafi K, Hazrati S, et al.2015. A survey on the ratio of effluent algal BOD concentration in primary and secondary facultative ponds to influent raw BOD concentration[J]. Desalination and Water Treatment, 53(13): 3475-3481. [4] Almasi M A.2017. Development of a colorimetric reverse transcription loop-mediated isothermal amplification assay for the detection of Mirafiori lettuce big-vein virus[J]. Archives of Virology, 162(9): 2775-2780. [5] Almasi M A, Almasi G.2018. Colorimetric immunocapture loop mediated isothermal amplification assay for detection of Impatiens necrotic spot virus (INSV) by GineFinder (TM) dye[J]. European Journal of Plant Pathology, 150(2): 533-538. [6] Almasi M A, Manesh M E, Jafary H, et al.2013. Visual detection of Potato leafroll virus by loop-mediated isothermal amplification of DNA with the GeneFinder (TM) dye[J]. Journal of Virological Methods, 192(1-2): 51-54. [7] Bao Y J, Jiang Y Z, Xiong E H, et al.2020. CUT-LAMP: Contamination-free loop-mediated isothermal amplification based on the CRISPR/Cas9 cleavage[J]. Acs Sensors, 5(4): 1082-1091. [8] Barrangou R.2015. The roles of CRISPR-Cas systems in adaptive immunity and beyond[J]. Current Opinion in Immunology, 32: 36-41. [9] Barrangou R, Fremaux C, Deveau H, et al.2007. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 315(5819): 1709-1712. [10] Bhaya D, Davison M, Barrangou R.2011. CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation[J]. Annual Review of Genetics, 45: 273-297. [11] Cai B J, Wang S T, Huang L, et al.2014. Ultrasensitive label-free detection of PNA-DNA hybridization by reduced graphene oxide field-effect transistor biosensor[J]. Acs Nano, 8(3): 2632-2638. [12] Chen G F, Ma C S, Zhang C Y, et al.2013a. A rapid and sensitive method for field detection of Prorocentrum donghaiense using reverse transcription-coupled loop-mediated isothermal amplification[J]. Harmful Algae, 29: 31-39. [13] Chen J, Huang Y, Shi M, et al.2013b. Highly sensitive multiplexed DNA detection using multi-walled carbon nanotube-based multicolor nanobeacon[J]. Talanta, 109: 160-166. [14] Chen J S, Ma E B, Harrington L B, et al.2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 360(6387): 436. [15] Chen X X, Wu X L, Gan M, et al.2015. Rapid detection of Staphylococcus aureus in dairy and meat foods by combination of capture with silica-coated magnetic nanoparticles and thermophilic helicase-dependent isothermal amplification[J]. Journal of Dairy Science, 98(3): 1563-1570. [16] Chen X Y, Wang X F, Jin N, et al.2012. Endpoint visual detection of three genetically modified rice events by loop-mediated isothermal amplification[J]. International Journal of Molecular Sciences, 13(11): 14421-14433. [17] Chen Y T, Cheng N, Xu Y C, et al.2016. Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor[J]. Biosensors & Bioelectronics, 81: 317-323. [18] Cheng N, Shang Y, Xu Y C, et al.2017. On-site detection of stacked genetically modified soybean based on event specific TM-LAMP and a DNAzyme-lateral flow biosensor[J]. Biosensors & Bioelectronics, 91: 408-416. [19] Cho S W, Kim S, Kim Y, et al.2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J]. Genome Research, 24(1): 132-141. [20] Chomean S, Pholyiam K, Thamwarokun A, et al.2018. Development of visual detection of-thalassemia-1 (the--(SEA) deletion) using pH-sensitive loop-mediated isothermal amplification[J]. Hemoglobin, 42(3): 171-177. [21] Coelho B J, Veigas B, Aguas H, et al.2017. A digital microfluidics platform for loop-mediated isothermal amplification detection[J]. Sensors, 17(11): 2616. [22] Crone M A, Priestman M, Ciechonska M, et al.2020. A role for biofoundries in rapid development and validation of automated SARS-CoV-2 clinical diagnostics[J]. Nature Communications, 11(1):4464. [23] Fang X E, Chen H, Yu S N, et al.2011. Predicting viruses accurately by a multiplex microfluidic loop-mediated isothermal amplification chip[J]. Analytical Chemistry, 83(3): 690-695. [24] Fischbach J, Xander N C, Frohme M, et al.2015. Shining a light on LAMP assays-A comparison of LAMP visualization methods including the novel use of berberine[J]. Biotechniques, 58(4): 189-194. [25] Gao P, Yang H, Rajashankar K R, et al.2016. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition[J]. Cell Research, 26(8): 901-913. [26] Gilbert L A, Horlbeck M A, Adamson B, et al.2014. Genome-scale CRISPR-mediated control of gene repression and activation[J]. Cell, 159(3): 647-661. [27] Girish P S, Haunshi S, Vaithiyanathan S, et al.2013. A rapid method for authentication of Buffalo (Bubalus bubalis) meat by Alkaline Lysis method of DNA extraction and species specific polymerase chain reaction[J]. Journal of Food Science and Technology-Mysore, 50(1): 141-146. [28] Gootenberg J S, Abudayyeh O O, Kellner M J, et al.2018. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 360(6387): 439. [29] Gootenberg J S, Abudayyeh O O, Lee J W, et al.2017. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 356(6336): 438. [30] Goto M, Honda E, Ogura A, et al.2009. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue[J]. Biotechniques, 46(3): 167. [31] Haberl S, Jarc M, Strancar A, et al.2013. Comparison of alkaline lysis with electroextraction and optimization of electric pulses to extract plasmid dna from Escherichia coli[J]. Journal of Membrane Biology, 246(11): 861-867. [32] Harrington L B, Burstein D, Chen J S, et al.2018. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 362(6416): 839. [33] Hongwarittorrn I, Chaichanawongsaroj N, Laiwattanapaisal W.2017. Semi-quantitative visual detection of loop mediated isothermal amplification (LAMP)-generated DNA by distance-based measurement on a paper device[J]. Talanta, 175: 135-142. [34] Hsieh K, Mage P L, Csordas A T, et al.2014. Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP)[J]. Chemical Communications, 50(28): 3747-3749. [35] Huang G L, Huang Q, Xie L, et al.2017a. A rapid, low-cost, and microfluidic chip-based system for parallel identification of multiple pathogens related to clinical pneumonia[J]. Scientific Reports, 7(1): 6441. [36] Huang Q T, Lin X F, Zhu J J, et al.2017b. Pd-Au@carbon dots nanocomposite: Facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum[J]. Biosensors & Bioelectronics, 94: 507-512. [37] Ishino Y, Krupovic M, Forterre P.2018. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology[J]. Journal of Bacteriology, 200(7): e00580-17. [38] Jansen R, Van Embden J D A, Gaastra W, et al.2002. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 43(6): 1565-1575. [39] Ji J, Xu X, Wu Q Q, et al.2020. Simple and visible detection of duck hepatitis B virus in ducks and geese using loop-mediated isothermal amplification[J]. Poultry Science, 99(2): 791-796. [40] Jung J H, Oh S J, Kim Y T, et al.2015. Combination of multiplex reverse-transcription loop-mediated isothermal amplification with an immunochromatographic strip for subtyping influenza A virus[J]. Analytica Chimica Acta, 853: 541-547. [41] Kalofonou M, Georgiou P, Ou C P, et al.2012. An ISFET based translinear sensor for DNA methylation detection[J]. Sensors and Actuators B-Chemical, 161(1): 156-162. [42] Kalofonou M, Toumazou C.2013. Semiconductor technology for early detection of DNA methylation for cancer: From concept to practice[J]. Sensors and Actuators B-Chemical, 178: 572-580. [43] Karthik K, Rathore R, Thomas P, et al.2014. New closed tube loop mediated isothermal amplification assay for prevention of product cross-contamination[J]. MethodsX, 1: 137-143. [44] Kiddle G, Hardinge P, Buttigieg N, et al.2012. GMO detection using a bioluminescent real time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use[J]. BMC Biotechnology, 12, DOI: 10.1186/1472-6750-12-15. [45] Kleinstiver B P, Pattanayak V, Prew M S, et al.2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects[J]. Nature, 529(7587): 490. [46] Koonin E V, Makarova K S, Zhang F.2017. Diversity, classification and evolution of CRISPR-Cas systems[J]. Current Opinion in Microbiology, 37: 67-78. [47] Li L X, Li S Y, Wu N, et al.2019. HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation[J]. Acs Synthetic Biology, 8(10): 2228-2237. [48] Liang C, Chen S J, Chu Y N, et al.2013. A closed-tube detection of loop-mediated isothermal amplification (LAMP) products using a wax-sealed fluorescent intercalator[J]. Journal of Nanoscience and Nanotechnology, 13(6): 3999-4005. [49] Liu N W, Zou D Y, Dong D R, et al.2017. Development of a multiplex loopmediated isothermal amplification method for the simultaneous detection of Salmonella spp. and Vibrio parahaemolyticus[J]. Scientific Reports, 7: 45601. [50] Lucchi N W, Ljolje D, Silva-flannery L, et al.2016. Use of malachite green-loop mediated isothermal amplification for detection of Plasmodium spp. Parasites[J]. PLOS ONE, 11(3): e0151437. [51] Ma C P, Wang F X, Wang X D, et al.2017. A novel method to control carryover contamination in isothermal nucleic acid amplification[J]. Chemical Communications, 53(77): 10696-10699. [52] Ma X J, Shu Y L, Nie K, et al.2010. Visual detection of pandemic influenza A H1N1 Virus 2009 by reverse-transcription loop-mediated isothermal amplification with hydroxynaphthol blue dye[J]. Journal of Virological Methods, 167(2): 214-217. [53] Mair G, Vilei E M, Wade A, et al.2013. Isothermal loop-mediated amplification (lamp) for diagnosis of contagious bovine pleuro-pneumonia[J]. Bmc Veterinary Research, 9, Article number: 108 (2013) . [54] Makarova K S, Wolf Y I, Alkhnbashi O S, et al.2015. An updated evolutionary classification of CRISPR-Cas systems[J]. Nature Reviews Microbiology, 13(11): 722-736. [55] Mori Y, Hirano T, Notomi T.2006. Sequence specific visual detection of LAMP reactions by addition of cationic polymers[J]. Bmc Biotechnology, 6, Article number: 3 (2006). [56] Mori Y, Nagamine K, Tomita N, et al.2001. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation[J]. Biochemical and Biophysical Research Communications, 289(1): 150-154. [57] Niessen L, Bechtner J, Fodil S, et al.2018. LAMP-based group specific detection of aflatoxin producers within Aspergillus section Flavi in food raw materials, spices, and dried fruit using neutral red for visible-light signal detection[J]. International Journal of Food Microbiology, 266: 241-250. [58] Notomi T, Okayama H, Masubuchi H, et al.2000. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research, 28(12): E63. [59] Nyan D C, Swinson K L.2015. A novel multiplex isothermal amplification method for rapid detection and identification of viruses[J]. Scientific Reports, 5: 17925. [60] Nzelu C O, Gomez E A, Caceres A G, et al.2014. Development of a loop-mediated isothermal amplification method for rapid mass-screening of sand flies for Leishmania infection[J]. Acta Tropica, 132: 1-6. [61] Pardee K, Green A A, Takahashi M K, et al.2016. Rapid, low-cost detection of Zika virus using programmable biomolecular components[J]. Cell, 165(5): 1255-1266. [62] Parida M M, Santhosh S R, Dash P K, et al.2006. Development and evaluation of reverse transcription-loop-mediated isothermal amplification assay for rapid and real-time detection of Japanese encephalitis virus[J]. Journal of Clinical Microbiology, 44(11): 4172-4178. [63] Peng J, Zhang J F, Xia Z H, et al.2012. Rapid and sensitive detection of Banana bunchy top virus by loop-mediated isothermal amplification[J]. Journal of Virological Methods, 185(2): 254-258. [64] Poole C B, Li Z R, Alhassan A, et al.2017. Colorimetric tests for diagnosis of filarial infection and vector surveillance using non-instrumented nucleic acid loop-mediated isothermal amplification (NINA-LAMP)[J]. PLOS ONE, 12(2): e0169011. [65] Purushothaman S, Toumazou C, Ou C P.2006. Protons and single nucleotide polymorphism detection: A simple use for the ion sensitive field effect transistor[J]. Sensors and Actuators B-Chemical, 114(2): 964-968. [66] Qian C, Wang R, Wu H, et al.2019. Uracil-mediated new photospacer-adjacent motif of Cas12a to realize visualized DNA detection at the single-copy level free from contamination[J]. Analytical Chemistry, 91(17): 11362-11366. [67] Rahman M S, Anower M S, Rahman M K, et al.2017. Modeling of a highly sensitive MoS2-Graphene hybrid based fiber optic SPR biosensor for sensing DNA hybridization[J]. Optik, 140: 989-997. [68] Safavieh M, Ahmed M U, Sokullu E, et al.2014. A simple cassette as point-of-care diagnostic device for naked-eye colorimetric bacteria detection[J]. Analyst, 139(2): 482-487. [69] Salm E, Zhong Y, Reddy B, et al.2014. Electrical detection of nucleic acid amplification using an on-chip quasi-reference electrode and a PVC REFET[J]. Analytical Chemistry, 86(14): 6968-6975. [70] Sayad A, Ibrahim F, Uddin S M, et al.2018. A microdevice for rapid, monoplex and colorimetric detection of foodborne pathogens using a centrifugal microfluidic platform[J]. Biosensors & Bioelectronics, 100: 96-104. [71] Shan Z, Li X H, Gao Y Y, et al.2012. Application of magnetic hydroxyapatite nanoparticles for solid phase extraction of plasmid DNA[J]. Analytical Biochemistry, 425(2): 125-127. [72] Shao N, Chen J W, Hu J Y, et al.2017. Visual detection of multiple genetically modified organisms in a capillary array[J]. Lab on a Chip, 17(3): 521-529. [73] Slaymaker I M, Gao L Y, Zetsche B, et al.2016. Rationally engineered Cas9 nucleases with improved specificity[J]. Science, 351(6268): 84-88. [74] Strecker J, Jones S, Koopal B, et al.2019. Engineering of CRISPR-Cas12b for human genome editing[J]. Nature Communications, 10(1): 212. [75] Tahmasebpour M, Bahrami M, Asgari A.2015. Design of a high figure of merit subwavelength grating based plasmonic sensor for detection of DNA hybridization[J]. Optik, 126(20): 2747-2751. [76] Tamura S, Maeda T, Misawa K, et al.2017. Development of a highly resolved loop-mediated isothermal amplification method to detect the N526K ftsl mutation of beta-lactamase-negative ampicillin-resistant Haemophilus influenzae[J]. Journal of Microbiological Methods, 141: 108-114. [77] Tanner N A, Zhang Y H, Evans T C.2012. Simultaneous multiple target detection in real-time loop-mediated isothermal amplification[J]. Biotechniques, 53(2): 81. [78] Tanner N A, Zhang Y H, Evans T C.2015. Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes[J]. Biotechniques, 58(2): 59-68. [79] Teixeira A, Paris J L, Roumani F, et al.2020. Multifuntional gold nanoparticles for the SERS detection of pathogens combined with a LAMP-in-microdroplets approach[J]. Materials, 13(8): 1934. [80] Tomita N, Mori Y, Kanda H, et al.2008. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products[J]. Nature Protocols, 3(5): 877-882. [81] Toumazou C, Shepherd L M, Reed S C, et al.2013. Simultaneous DNA amplification and detection using a pH-sensing semiconductor system[J]. Nature Methods, 10(7): 641. [82] Trinh T N D, Lee N Y.2018. A rapid and eco-friendly isothermal amplification microdevice for multiplex detection of foodborne pathogens[J]. Lab on a Chip, 18(16): 2369-2377. [83] Vashishtha A K, Konigsberg W H.2016. Effect of different divalent cations on the kinetics and fidelity of RB69 DNA polymerase[J]. Biochemistry, 55(18): 2661-2670. [84] Veigas B, Branquinho R, Pinto J V, et al.2014. Ion sensing (EIS) real-time quantitative monitorization of isothermal DNA amplification[J]. Biosensors & Bioelectronics, 52: 50-55. [85] Wang R, Qian C, Pang Y, et al.2021. opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection[J]. Biosensors & Bioelectronics, 172: 112766. [86] Wang X F, Fu Z F, Chen X Y, et al.2017. Use of a novel metal indicator to judge loop-mediated isothermal amplification for detecting the 35S promoter[J]. Analytical and Bioanalytical Chemistry, 409(4): 881-889. [87] Wu H, He J S, ZhanG F, et al.2020a. Contamination-free visual detection of CaMV35S promoter amplicon using CRISPR/Cas12a coupled with a designed reaction vessel: Rapid, specific and sensitive[J]. Analytica Chimica Acta, 1096: 130-137. [88] Wu H, Qian C, Wu C, et al.2020b. End-point dual specific detection of nucleic acids using CRISPR/Cas12a based portable biosensor[J]. Biosensors & Bioelectronics, 157: 112153. [89] Xie S B, Chai Y Q, Yuan Y L, et al.2014. Development of an electrochemical method for Ochratoxin A detection based on aptamer and loop-mediated isothermal amplification[J]. Biosensors & Bioelectronics, 55: 324-329. [90] Xie S B, Tang Y, Tang D Y.2018. Converting pyrophosphate generated during loop mediated isothermal amplification to ATP: Application to electrochemical detection of Nosema bombycis genomic DNA PTP1[J]. Biosensors & Bioelectronics, 102: 518-524. [91] Xu J, Guo J, Mania S W, et al.2018. An aptasensor for staphylococcus aureus based on nicking enzyme amplification reaction and rolling circle amplification[J]. Analytical Biochemistry, 549: 136. [92] Xu S J, Shao Y, Ma K, et al.2012. DNA abasic site-based aptamer for selective fluorescence light-up detection of fisetin by excited-state intramolecular proton transfer[J]. Sensors and Actuators B-Chemical, 171: 666-671. [93] Yan L, Zhou J, Zheng Y, et al.2014. Isothermal amplified detection of DNA and RNA[J]. Molecular Biosystems, 10(5): 970-1003. [94] Yang B Y, Liu X L, Wei Y M, et al.2014. Rapid and sensitive detection of human astrovirus in water samples by loop-mediated isothermal amplification with hydroxynaphthol blue dye[J]. BMC Microbiology, 14(1): 38. [95] Yang J, Chen H, Wang Z Z, et al.2017. Development of a quantitative loop-mediated isothermal amplification assay for the rapid detection of novel Goose parvovirus[J]. Frontiers in Microbiology, 8: 2472. [96] Yin H Y, Fang T J, Wen H W.2016. Combined multiplex loop-mediated isothermal amplification with lateral flow assay to detect sea and seb genes of enterotoxic Staphylococcus aureus[J]. Letters in Applied Microbiology, 63(1): 16-24. [97] Zhang F, Wang L, Wang R, et al.2015. Simple screening strategy with only water bath needed for the identification of insect-resistant genetically modified rice[J]. Analytical Chemistry, 87(3): 1523-1526. [98] Zhang F, Wang R, Wang L, et al.2014a. Tracing phosphate ions generated during DNA amplification and its simple use for visual detection of isothermal amplified products[J]. Chemical Communications, 50(92): 14382-14385. [99] Zhang F, Wu J, Wang R, et al.2014b. Portable pH-inspired electrochemical detection of DNA amplification[J]. Chemical Communications, 50(61): 8416-8419. [100] Zhang M, Liu Y N, Chen L L, et al.2013. One simple DNA extraction device and its combination with modified visual loop-mediated isothermal amplification for rapid on-field detection of genetically modified organisms[J]. Analytical Chemistry, 85(1): 75-82. [101] Zhao Y X, Chen F, Li Q, et al.2015. Isothermal amplification of nucleic acids[J]. Chemical Reviews, 115(22): 12491-12545. |
[1] |
HUANG Xing, YAN Ai-Fen, DENG Ting-Xian, OUYANG Hong-Jia, LIU Lian, FENG Juan, ZHU Xiang-Xing, NIE Qing-Hua, TANG Dong-Sheng, ZHANG Xi-Quan. Construction of Zinc Finger Nuclease-induced Targeting Vector of Luchuan Pig (Sus scrofa) Fat1 Gene and Transgenic Study In vitro[J]. 农业生物技术学报, 2019, 27(8): 1369-1381. |
|
|
|
|