|
|
Spatiotemporal Characteristics and the Prediction of Risk Areas for Wheat (Triticum aestivum) Fusarium Head Blight in Hebei Province Based on MaxEnt Model |
TAO Bu1,*, QI Yong-Zhi1,*, ZHAO Xu-Sheng1, CAO Zhi-Yan1, ZHEN Wen-Chao2,** |
1 College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; 2 College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Regulation and Control of Crop Growth of Hebei, Baoding 071001, China |
|
|
Abstract Fusarium head blight (FHB), a serious threat to wheat production, has become a worldwide problem affecting the sustainable development of wheat (Triticum aestivum). Since the middle of 1990s, the disease occurred from spots to large areas and become one of the main diseases of wheat in Hebei province, with an average annual occurrence area of 267 000 hm2 or more. In order to provide the basis for scientific prevention and control FHB, MaxEnt model was used to predict the risk area of the disease in Hebei province in this study. Z-score method was used to standardize the occurrence area and area ratio of FHB in Hebei province from 2003 to 2018, and the features in time and space of FHB occurrence were analyzed. Based on the distribution characteristics of FHB in Hebei and the data of environmental variables, MaxEnt model was used to predict the potential risk area of FHB in Hebei. The area under the curve (AUC) of receiver operating characteristic (ROC) was used to evaluate the accuracy of the prediction model. The occurrence and prevalence of FHB in Hebei had a certain periodicity and spatial correlation, and the AUC value of MaxEnt model was 0.816, which indicated that the predicted distribution area of FHB had a good fit with the actual distribution area. The high and middle risk areas of FHB accounted for 14.98% and 10.19% of the total area of the whole province, respectively, mainly concentrated in the middle and south of Hebei. Among them, 66 counties were high risk areas, including the south of Baoding, the middle and east of Shijiazhuang, Hengshui, the middle and East of Xingtai, and the middle and east of Handan. The results of environmental variables analysis showed that the mean temperature of the warmest quarter (bio 10), the max temperature of the warmest month (bio 5), the mean temperature of the coldest quarter (bio 11) and the minimum temperature of the coldest month (bio 6) had a greater impact on the potential distribution of FHB. Among them, the relative contribution rate of bio10 was the important, accounting for 67.9%, and its importance accounted for 22.2%. The high and middle risk areas of FHB in Hebei accounted for 25.17% of the total area of the whole province, mainly concentrated in the central and southern part of Hebei. The occurrence of the disease has a high risk in Hebei. The establishment of the FHB prediction model will provide the basis for disease prediction and effective prevention and control.
|
Received: 24 February 2021
|
|
Corresponding Authors:
** wenchao@hebau.edu.cn
|
About author:: * These authors contributed equally to this work |
|
|
|
[1] 曹克强, 唐铁朝, 石文川, 等. 2000. 河北省小麦主要病害种类及地域分布[J]. 河北农业大学学报, 23(4): 57-61. (Cao K Q, Tang T C, Shi W C, et al.2000. The major wheat diseases and their distributions in Hebei province[J]. Journal of Agricultural University of Hebei, 23(4): 57-61.) [2] 曹璐, 高苹, 吴洪颜. 2020. 江苏省小麦赤霉病多因子综合风险评估与区划[J]. 植物保护, 46(4): 105-109. (Cao L, Gao P, Wu H Y.2020. Multifactor comprehensive risk assessment and zoning map of wheat scab epidemics in Jiangsu province[J]. Plant Protection, 46(4): 105-109.) [3] 曹学仁, 陈林, 周益林, 等. 2011. 基于MaxEnt的麦瘟病在全球及中国的潜在分布区预测[J]. 植物保护, 37(3): 80-83. (Cao X R, Chen L, Zhou Y L, et al.2011. Potential distribution of Magnaporthe grisea in China and the world, predicted by MaxEnt[J]. Plant Protection, 37(3): 80-83.) [4] 常志隆, 周益林, 赵遵田, 等. 2010. 基于MaxEnt模型的小麦印度腥黑穗病在中国的适生性分析[J]. 植物保护, 36(3): 110-112, 129. (Chang Z L, Zhou Y L, Zhao Z T, et al.2010. Suitability analysis of Karnal bunt in China based on MaxEnt model[J]. Plant Protection, 36(3): 110-112, 129.) [5] 付强, 关海鸥. 2021. WELM-Adaboost算法及在小麦赤霉病流行强度预测中的应用[J]. 黑龙江八一农垦大学学报, 33(1): 89-94. (Fu Q, Guan H O.2021. WELM-Adaboost algorithm and application in prediction of epidemic intensity of Wheat Scab[J]. Journal of Heilongjiang Bayi Agricultural University, 33(1): 89-94.) [6] 李志红, 秦誉嘉. 2018. 有害生物风险分析定量评估模型及其比较[J]. 植物保护, 44(5): 134-145. (Li Z H, Qin Y J.2018. Review on the quantitative assessment models for pest risk analysis and their comparison[J]. Plant Protection, 44(5): 134-145.) [7] 林伟, 徐淼锋, 权永兵, 等. 2019. 基于MaxEnt模型的草地贪夜蛾适生性分析[J]. 植物检疫, 33(4): 69-73. (Lin W, Xu M F, Quan Y B, et al.2019. Potential geographic distribution of Spodoptera frugiperda in China based on MaxEnt model[J]. Plant Quarantine, 33(4): 69-73.) [8] 刘静远, 朱雅君, 吴启明, 等. 2020. 基于CLIMEX和MaxEnt的小麦线条花叶病毒在我国适生性分析[J]. 植物检疫, 34(4): 64-68. (Liu J Y, Zhu Y J, Wu Q M, et al.2020. Predication of potential geographical distribution of wheat streak mosaic virus based on CLIMEX and MaxEnt[J]. Plant Quarantine, 34(4): 64-68.) [9] 刘雨晴, 钱硕楠, 李后魂. 2019. 中国鳞翅目小蛾类昆虫寄主植物分析[J]. 环境昆虫学报, 41(3): 520-532. (Liu Y Q, Qian S N, Li H H.2019. Analysis of host plants of micro moths in China[J]. Journal of Environmental Entomology, 41(3): 520-532.) [10] 陆维忠, 程顺和, 王裕中. 2001. 小麦赤霉病研究[M]. 北京: 科学出版社, pp. 7-9. (Lu W Z, Cheng S H, Wang Y Z.2001. Study on Wheat Scab[M]. Science Press, Beijing, China, pp. 7-9.) [11] 齐国君, 陈婷, 何自福, 等. 2016. 基于Maxent模型的棉花曲叶病在中国的适生性分析[J]. 棉花学报, 28(5): 443-451. (Qi G J, Chen T, He Z F, et al.2016. Maxent model-based analysis of the potential geographic distribution of Cotton leaf curl disease in China[J]. Cotton Science, 28(5): 443-451.) [12] 孙红云, 徐亮胜, 冯浩, 等. 2020. 基于MaxEnt模型预测苹果树腐烂病在中国的潜在地理分布[J]. 西北农业学报, 29(3): 461-466. (Sun H Y, Xu L S, Feng H, et al.2020. Prediction for potential geographical distribution of apple canker in China based on MaxEnt model[J]. Acta Agriculturae Boreali-occidentalis Sinica, 29(3): 461-466.) [13] 宋瑞, 王嘉荟, 袁冬贞, 等. 2020, 小麦赤霉病自动监测预警系统应用效果评价[J]. 植物保护, 46(3): 215-219. (Song R, Wang J H, Yuan D Z, et al.2020. Application effect evaluation of the automatic monitoring and warning system for Fusarium head blight[J]. Plant Protection, 46(3): 215-219.) [14] 石守定. 2004. 基于GIS的小麦条锈病菌越夏越冬气候区划及时空动态分析[D]. 硕士学位论文, 中国农业大学, 导师: 马占鸿, pp. 6-8. (Shi S D.2004. Climate-based regional classification for oversummering and overwintering of Puccinia striiformis and spatio-temporal dynamic analysis in China with GIS[D]. Thesis for M. S., China Agricultural University, Supervisor: Ma Z H, pp. 6-8.) [15] 王茹琳, 郭翔, 李庆, 等. 2019. 四川省猕猴桃溃疡病潜在分布预测及适生区域划分[J]. 应用生态学报, 30(12): 4222-4230. (Wang R L, Guo X, Li Q, et al.2019. Potential distribution and suitability regionalization of kiwifruit canker disease Sichuan province, China[J]. Chinese Journal of Applied Ecology, 30(12): 4222-4230.) [16] 王运生, 谢丙炎, 万方浩, 等. 2007. 相似穿孔线虫在中国的适生区预测[J]. 中国农业科学, 40(11): 2502-2506. (Wang Y S, Xie B Y, Wan F H, et al.2007. Potential geographic distribution of Radopholus similis in China[J]. Scientia Agricultura Sinica, 40(11): 2502-2506.) [17] 王政权. 1999.地统计学及在生态学中的应用[M]. 北京: 科学出版社, pp. 65-77. (Wang Z Q.1999. Geostatistics and its application in ecology[M]. Science Press, Beijing, China, pp. 65-77.) [18] 徐芳. 2012. 基于生产条件变化的河北省小麦玉米两熟生物灾害风险管理研究[D]. 硕士学位论文, 河北农业大学, 导师: 甄文超. pp. 13-14. (Xu F.2012. Study on bio-disaster risk management of the double cropping system of wheat and maize based on production condition change in Hebei province[D]. Thesis for M. S., Hebei Agricultural University, Supervisor: Zhen W C. pp. 13-14.) [19] 徐敏, 徐经纬, 谢志清, 等. 2020. 随机森林机器算法在江苏省小麦赤霉病病穗率预测中的应用[J]. 气象学报, 78(1): 143-153. (Xu M, Xu J W, Xie Z Q, et al.Application of the random forest machine algorithm in forecasting diseased panicle rate of Wheat scab in Jiangsu province[J]. Acta Meteorologica Siaica, 78(1): 143-153.) [20] 徐永红, 陈力, 唐松, 等. 2020. 柑橘轮斑病的适生区预测及风险分析[J]. 中国农业科学, 53(21): 4430-4439. (Xu Y H, Chen L, Tang S, et al.2020. Prediction of suitable area and risk analysis for Citrus target spot[J]. Scientia Agricultura Sinica, 53(21): 4430-4439.) [21] 张爱民, 阳文龙, 李欣, 等. 2018. 小麦抗赤霉病研究现状与展望[J]. 遗传, 40(10): 858-873. (Zhang A M, Yang W L, Li X, et al.2018. Research status and prospect of wheat scab resistance[J]. Hereditas, 40(10): 858-873.) [22] 张雪松, 曹永胜, 曹克强. 2006. 保护性耕作条件下河北粮食作物植物保护新问题和治理对策[J]. 植物保护, 32(2): 19-22. (Zhang X S, Cao Y S, Cao K Q.2006. Management of pests on crops under the conservative farming system[J]. Plant Protecion, 32(2): 19-22.) [23] Araújo M B, Pearson R G, Thuiller W, et al.2005. Validation of species-climate impact models under climate change[J]. Global Change Biology, (11): 1504-1513. [24] De Wolf E D, Madden L V, Lipps P E.2003. Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data[J]. Phytopathology, 93(4): 428-435. [25] Elith J, Phillips S J, Hastie T, et al.2011. A statistical explanation of MaxEnt for ecologists[J]. Diversity and Distributions, 17(1): 43-57. [26] Fernandez I C, Morales N S.2019. One-class land-cover classification using MaxEnt: The effect of modelling parameterization on classification accuracy[J]. Peer Journal, 7: e7016. [27] Giroux M-E, Bourgeois G, Dion Y, et al.2016. Evaluation of forecasting models for Fusarium head blight of wheat under growing conditions of Quebec, Canada[J]. Plant Disease, 100(6): 1192-1201. [28] Shukla P K, Baradevanal G, Rajan S.2020. MaxEnt prediction for potential risk of mango wilt caused by Ceratocystis fimbriata Ellis and Halst under different climate change scenarios in India[J]. Journal of Plant Pathology, 102(3): 765-773. [29] Jaynes E T.1957. Information theory and statistical mechanics[J]. Physical Review, 106(4): 620-630. [30] Ji L J, Li Q S, Wang Y J, et al.2019. Monitoring of Fusarium species and trichothecene genotypes associated with Fusarium head blight on wheat in Hebei province, China[J]. Toxins, 11(5): 243-253. [31] Lieli R P, Hsu Y.2019. Using the area under an estimated ROC curve to test the adequacy of binary predictors[J]. Journal of Nonparametric Statistics, 31(1): 100-130. [32] Low B W, Zeng Y W, Tan H H, et al.2020. Predictor complexity and feature selection affect Maxent model transferability: Evidence from global freshwater invasive species[J]. Diversity and Distributions, 27(3): 497-511. [33] Mcmullen M, Jones R, Gallenberg D.1997. Scab of wheat and barley: A re-emerging disease of devastating impact[J]. Plant Disease, 81(12): 1340-1348. [34] Moschini R C, Pioli R, Carmona M, et al.2001. Empirical predictions of wheat head blight in the northern argentinean pampas region[J]. Crop Science, 41(5): 1541-1545. [35] Moua Y, Roux E, Seyler F, et al.2020. Correcting the effect of sampling bias in species distribution modeling-A new method in the case of a low number of presence data[J]. Ecological Informatics, 57: 101086. [36] Parry D W, Jenkinson P, Mcleod L.1995. Fusarium ear blight (scab) in small grain cereals-a review[J]. Plant Pathology, 44(2): 207-238. [37] Phillips S J, Anderson R P, Schapire R E.2006. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 190(3-4): 231-259. [38] Shimwela M M, Blackburn J K, Jones J B, et al.2017. Local and regional spread of banana xanthomonas wilt (BXW) in space and time in Kagera, Tanzania[J]. Plant Pathology, 66(6): 1003-1014. [39] Swets J A.1988. Measuring the accuracy of diagnostic systems[J]. Science, 240(4857): 1285-1293. [40] Wan J, Qi G J, Ma J, et al.2020. Predicting the potential geographic distribution of Bactrocera bryoniae and Bactrocera neohumeralis (Diptera: Tephritidae) in China using MaxEnt ecological niche modeling[J]. Journal of Integrative Agriculture, 19(8): 2072-2082. [41] Wan J, Wang C, Yu F.2019. Effects of occurrence record number, environmental variable number, and spatial scales on MaxEnt distribution modelling for invasive plants[J]. Biologia, 74(7): 757-766. [42] Wang J.2018. Suitable habitats prediction of Coptis chinensis under climate change based on MaxEnt[J]. Botanical Research, 7(1): 7-14. [43] Wang Y Q, Ma J F, Li X Q, et al.2017. The distribution of Athetis lepigone and prediction of its potential distribution based on GARP and MaxEnt[J]. Journal of Applied Entomology, 141(6): 431-440. |
|
|
|