|
|
Development and Validation of SSR Markers Related to Starch Content Traits in Tetraploid Potato (Solanum tuberosum) |
LI Jia-Qi, YU Zhuo, ZHANG Sheng, YU Xiao-Xia*, LI Jing-Wei, LU Qian-Qian, YANG Dong-Sheng |
College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, China |
|
|
Abstract Starch is one of the important quality characters of potato (Solanum tuberosum), and the development of linkage molecular markers could promote the breeding of high starch content varieties. In this study, 106 F1 individuals and 240 F2 individuals and their parents tetraploid potato wild species (S. demissum) 'YSP-4' (female parent) and low starch line 'MIN-021' (male parent) were used as materials, a candidate interval associated with starch content was excavated based on the previous results of specific-locus amplified fragment sequencing (SLAF-seq) combined bulked segregant analysis (BSA) strategy, two SSR markers chr2-SSR14 and chr2-SSR22 linked to starch content were developed in this interval, respectively, and verified by F2 segregation population. The results showed that the correlation between the detection results of chr2-SSR14 and chr2-SSR22 markers and phenotypic identification in F2 segregation population was 89.3% and 92.9%, respectively. After correlation analysis by SPSS software, the correlation coefficients (r) of the 2 markers were 0.68 and 0.769, respectively, which were significantly correlated at the level of 0.01 (P<0.01). The chr2-SSR14 and chr2-SSR22 markers developed in this study could be used for marker-assisted selection of high starch content trait in potato, which is of great significance for the breeding of new varieties of tetraploid potato with high starch content.
|
Received: 24 March 2021
|
|
|
|
|
[1] 雷剑, 柳俊. 2006. 一个与马铃薯青枯病抗性连锁的SRAP标记筛选[J]. 中国马铃薯, 20(3): 150-153. (Lei J, Liu J.2006. Identification of a SRAP marker linked to bacterial wilt resistance in diploid potato[J]. Chinese Potato Journal, 20(3): 150-153.) [2] 李飞. 2013. 马铃薯耐冻相关基因克隆与功能分析[D]. 博士学位论文, 中国农业科学院, 导师: 金黎平, pp. 56-58. (Li F.2013. Isolation and functioal analysis of the gene related to frost tolerance in potato[D]. Thesis for Ph. D., Chinese Academy of Agricultural Sciences, Suppervisor: Jin L P, pp. 56-58.) [3] 李建武. 2019. 马铃薯(Solanum tuberosum L.)块茎淀粉含量及植株熟性性状的QTL定位与遗传分析[D]. 博士学位论文, 华中农业大学, 导师: 谢从华, pp. 78-84. (Li J W.2019. QTL mapping and genetic dissection of tuber starch content and plant maturity in potato (Solanum tuberosum L.)[D]. Thesis for Ph. D., Hua Zhong Agricultural University, Suppervisor: Xie C H, pp. 78-84.) [4] 李兴翠, 李广存, 徐建飞, 等. 2017. 四倍体马铃薯熟性连锁SCAR标记的开发与验证[J]. 作物学报, 43(6): 821-828. (Li X C, Li G C, Xiu J F, et al.2017. Development and verification of SCAR marker linked to maturity in tetraploid potato[J]. Acta Agronomica Sinica, 43(6): 821-828.) [5] 单洪波, 史佳文, 石瑛. 2018. 四倍体马铃薯块茎蛋白含量分子标记的开发与验证[J]. 作物学报, 44(7): 1095-1102. (Shan H B, Shi J W, Shi Y.2018. Development and validation of molecular marker for protein content in tetraploid potato tuber[J]. Acta Agronomica Sinica, 44(7): 1095-1102.) [6] 孙慧生, 杨元军. 2001. 环境对马铃薯生育的影响[J]. 青海农技推广, 6(4): 15-17. (Sun H S, Yang Y J.2001. Effect of the environment on the potato fertility[J]. Qinghai Agro-Technology Extension, 6(4): 15-17.) [7] 孙雨茜, 倪万潮, 杜平, 等. 2020. 基于简化基因组的甜叶菊分子标记开发[J]. 中国农学通报, 36(27): 111-117. (Sun Y Q, Ni W C, Du P, et al.2020. Development of molecular markers in stevia rebaudiana based on reduced-representation genome sequencing[J]. Chinese Agricultural Science Bulletin, 36(27): 111-117.) [8] 谭炎宁, 余东, 盛夏冰, 等. 2020. SLAF-seq BSA定位水稻黄叶转绿基因grc2的效果研究[J]. 农业生物技术学报, 28(3): 381-388. (Tan Y N, Yu D, Sheng X B, et al.2020. Effects on mapping the gene of green-revertible chlorina 2 (grc2) using SLAF-seq BSA in rice (Oryza sativa)[J]. Journal of Agricultural Biotechnology, 28(3): 381-388.) [9] 涂玉琴, 张洋, 辛佳佳, 等. 2019. 基于SLAF-seq技术鉴定甘蓝型油菜叶缘裂刻性状候选基因[J]. 植物遗传资源学报, 20(2): 426-435. (Tu Y Q, Zhang Y, Xin J J, et al.2019. Identification of candidate genes for lobed-leaf trait in Brassica napus L.by SLAF-seq method[J]. Journal of Plant Genetic Resources, 20(2): 426-435.) [10] 王加加, 徐建飞, 李颖, 等. 2008. 马铃薯抗晚疫病主效基因R10的RGA2CAPS标记的开发. 园艺学报, 35(6): 885-890. (Wang J J, Xu J F, Li Y, et al.2008. Developing of RGA-CAPS markers for resistant gene R10 to potato late blight[J]. Acta Horticulturae Sinica, 35(6): 885-890.) [11] 王丽, 李淑荣, 句荣辉, 等. 2018. 马铃薯淀粉与面条品质特性关系研究进展[J]. 食品工业, 39(3): 278-280. (Wang L, Li S R, Ju R H, et al.2018. Research progress on the relationship between potato starch and noodles quality, The Food Industry, 39(3): 278-280.) [12] 王伟. 2016. 甘蓝型油菜霜霉病抗性遗传及抗病基因分子标记的开发研究[D]. 硕士学位论文, 中国农业科学院, 导师: 方小平, pp. 6-8. (Wang W.2016. Research of resistance inheritance and molecular markers development of downy mildew to brassica napus[D]. Thesis for M. S., Chinese Academy of Agricultural Sciences, Suppervisor: Fang X P, pp. 6-8.) [13] 俞奔驰, 韦丽君, 雷开文, 等. 2018. 基于SLAF-seq技术的木薯SNP标记开发[J]. 植物生理学报, 54(6): 1029-1037. (Yu B C, Wei L J, Lei K W, et al.2018. Development of SNP markers in cassava (Manihot esculenta Crantz)based on SLAF-seq technology[J]. Plant Physiology Journal, 54(6): 1029-1037.) [14] 袁文月. 2018. 马铃薯淀粉特性及其综合应用[J]. 现代食品, 15: 43-47. (Yuan W Y.2018. Characteristics and comprehensive utilization of potato starch[J]. Xian Dai Shi Pin, 15: 43-47.) [15] 张红, 郑世英, 梁淑霞, 等. 2019. 高淀粉加工专用型马铃薯育种研究进展[J]. 作物杂志, 35(1): 9-14. (Zhang H, Zheng S Y, Liang S X, et al.2019. Research progress in breeding special potatoes with high starch content[J]. Crops, 35(1): 9-14.) [16] 张胜. 2011. 遗传因素和环境条件对马铃薯产量、品质、养分吸收影响的研究[D]. 博士学位论文, 内蒙古农业大学, 导师: 于卓, pp. 3-4. (Zhang S.2011. Effects of genetic factors and environmental conditions on potato tuber yield, quality and nutrients uptake[D]. Thesis for Ph.D., Inner Mongolia Agricultural University, Suppervisor: Yu Z, pp. 3-4.) [17] 张永成, 田丰. 2007. 马铃薯试验研究方法[M]. 中国农业科学技术出版社, 北京. pp. 166-168. (Zhang Y C, Tian F.2007. Research Methods of Potato Experiment[M]. China Agricultural Science and Technology Press, Beijing, China, pp. 166-168.) [18] 张永芳. 2010. 马铃薯分子育种研究进展[J]. 山西大同大学学报(自然科学版), 26(3): 56-59. (Zhang Y F.2010. Advances of research on the potato molecular breeding[J]. Journal of Shanxi Datong University (Natural Science), 26(3): 56-59.) [19] 朱文文, 徐建飞, 李广存, 等. 2015. 马铃薯块茎形状基因CAPS标记的开发与验证[J]. 作物学报, 41(10): 1529-1536. (Zhu W W, Xu J F, Li G C, et al.2015. Development and verification of a CAPS marker linked to tuber shape gene in potato[J]. Acta Agronomica Sinica, 41(10): 1529-1536.) [20] Che Y H, Song N, Yang Y P, et al.2018. QTL mapping of six spike and stem traits in hybrid population of Agropyron Gaertn. in multiple environments[J]. Frontiers in Plant Science, 9(10): 1422. [21] Chen X, Salamini F, Gebhardt C.2001. A potato molecular-function map for carbohydrate metabolism and transport[J]. Theoretical and Applied Genetics, 102(2): 284-295. [22] Ebúrneo J M, Garcia E L, Santos Thaís Paes Rodrigues dos, et al.2018. Influence of nitrogen fertilization on the characteristics of potato starch[J]. Australian Journal of Crop Science, 12(3): 365-373. [23] Jansen G, Flamm E W, Schüler K, et al.2001. Tuber and starch quality of wild and cultivated potato species and cultivars[J]. Potato Research, 44(2): 137-146. [24] Li L, Paulo M-J, Strahwald J, et al.2008. Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield[J]. Theoretical and Applied Genetics, 116(8): 1167-1181. [25] Li L, Tacke E, Hofferbert H R, et al.2013. Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality[J]. Theoretical and Applied Genetics, 126(4): 1039-1052. [26] Michelmore R W, Paran I, Kesseli R V.1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proceedings of the National Academy of Sciences of the USA, 88(21): 9828-9832. [27] Möller K H.1956. Sämlingsanzucht im gewächshaus zur züchtung frühreifer kartoffeln[J]. Der Züchter, 26(7): 243-248. [28] Orbegozo J, Roman M L, Rivera C, et al.2016. Rpi-blb2, gene from Solanum bulbocastanum, confers extreme resistance to late blight disease in potato[J]. Plant Cell Tissue Organ Cult, 125(2): 269-281. [29] Ramakrishnan A P, Ritland C E, Sevillano R H B.2015. Riseman a review of potato molecular markers to enhance trait selection[J]. American Journal of Potato Research, 92(4): 455-472. [30] Schönhals E M, Ortega F, Barandalla L, et al.2016. Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.)[J]. Theoretical and Applied Genetics, 129(4): 767-785. [31] Sliwka J, Soltys-Kalina D, Szajko K, et al.2016. Mapping of quantitative trait loci for tuber starch and leaf sucrose contents in diploid potato[J]. Theoretical and Applied Genetics, 129(1): 131-140. [32] Sun X W, Liu D Y, Zhang X F, et al.2013. SLAF-seq: An efficient method of large-scale De novo SNP discovery and genotyping using high-throughput sequencing. PLOS ONE, 8(3): e58700. [33] Wang G Y, Chen B, Du H S, et al.2018. Genetic mapping of anthocyanin accumulation-related genes in pepper fruits using a combination of SLAF-seq and BSA[J]. PLOS ONE, 13(9): e0204690. [34] Zhang X F, Wang G Y, Chen B, et al.2018. Candidate genes for first flower node identified in pepper using combined SLAF-seq and BSA[J]. PLOS ONE, 13(3): e0194071. |
[1] |
GAO Jie, SONG Guo-Qi, LI Ji-Hu, LI Yu-Lian, ZHANG Shu-Juan, ZHANG Rong-Zhi, GU Tian-Tian, LI Gen-Ying, LI Wei. Convertion and Redevelopment of Molecular Markers of 4 Pleiotropic Disease Resistance Genes in Wheat (Triticum aestivum)[J]. 农业生物技术学报, 2021, 29(5): 847-856. |
|
|
|
|