|
|
Research Progress on the Butanol Production by Clostridium beijerinckii |
LI Qing-De, WANG Xiao-Fen, SUN Lian-Jun* |
College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China |
|
|
Abstract As an excellent renewable fuel, butanol is of great value to solve the problem of shortage of petroleum resources. Clostridium beijerinckii is the most important strain for butanol production. In this paper, the latest research progress of butanol production by C. beijerinckii was reviewed from four aspects: strain selection and molecular transformation to improve the butanol production and enhance the resistance to the environment, the development and utilization of cheap substrates, the optimization of butanol fermentation conditions and the improvement of production process, and the co-culture with cellulose or oxygen treatment bacteria to promote butanol production. This review provides a reference for the green and efficient production of butanol by C. beijerinckii.
|
Received: 11 May 2020
|
|
Corresponding Authors:
*sunlj@cau.edu.cn
|
|
|
|
[1] An Y, Chen R, Guo T, et al.2016. Increasing resistance of Clostridium beijerinckii against 4-hydroxycinnamic acid used for preparing butanol by fermentation, involves deactivating NADH-dependent reductase coenzyme Q subunit A in Clostridium beijerinckii [P].China, 105567603-A. [2] Bellido C, Loureiro Pinto M, Coca M, et al.2014. Acetone-butanol-ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: Efficient use of penta and hexa carbohydrates[J]. Bioresource Technology, 167: 198-205. [3] Bellido C, Infante C, Coca M, et al.2015. Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulp[J]. Bioresource Technology, 190: 332-338. [4] Boonsombuti A, Luengnaruemitchai A, Wongkasemjit S.2015. Effect of phosphoric acid pretreatment of corncobs on the fermentability of Clostridium beijerinckii tistr 1461 for biobutanol production[J]. Preparative Biochemistry & Biotechnology, 45(2): 173-191. [5] Boonsombuti A, Tangmanasakul K, Nantapipat J, et al.2016. Production of biobutanol from acid-pretreated corncob using Clostridium beijerinckii TISTR 1461: Process optimization studies[J]. Preparative Biochemistry & Biotechnology, 46(2): 141-149. [6] Branska B, Pechacova Z, Kolek J, et al.2018. Flow cytometry analysis of Clostridium beijerinckii NRRL B-598 populations exhibiting different phenotypes induced by changes in cultivation conditions[J]. Biotechnology for Biofuels, 11(1): 99. [7] Chotwichien A, Luengnaruemitchai A, Jai-In S.2009. Utilization of palm oil alkyl esters as an additive in ethanol-diesel and butanol-dieselblends[J]. Fuel, 88(9): 1618-1624. [8] de Gerando H M, Fayolle-Guichard F, Rudant L, et al.2016. Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling[J]. Applied Microbiology Biotechnology, 100(12): 5427-5436. [9] Dhamole P B, Demanna D, Desai S A.2014. Extraction of p-coumaric acid and ferulic acid using surfactant-based aqueous two-phase system[J]. Applied Biochemistry and Biotechnology, 174(2): 564-573. [10] Du T F, He A Y, Wu H, et al.2013. Butanol production from acid hydrolyzed corn fiber with Clostridium beijerinckii mutant[J]. Bioresource Technology, 135: 254-261. [11] Ezeji T C, Qureshi N, Blaschek H P.2007. Bioproduction of butanol from biomass: From genes to bioreactors[J]. Current Opinion in Biotechnology, 18(3): 220-227. [12] Ezeji T C, Qureshi N, Karcher P, et al.2006. Production of Butanol from Corn.[J]. Chemical Industries .112: 99-122 [13] Guo T, Tang Y, Xi Y-L, et al.2011. Clostridium beijerinckii mutant obtained by atmospheric pressure glow discharge producing high proportions of butanol and solvent yields[J]. Biotechnology Letters, 33(12): 2379-2383. [14] Guo T, Tang Y, Zhang Q-y, et al.2012. Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation[J]. Journal of Industrial Microbiology & otechnology(3): 401-407. [15] Guo T, He A Y, Du T F, et al.2013. Butanol production from hemicellulosic hydrolysate of corn fiber by a Clostridium beijerinckii mutant with high inhibitor-tolerance[J]. Bioresource Technology, 135: 379-385. [16] He A, Yin C, Kong X, et al.2014. Screening of Clostridium beijerinckii mutant with high inhibitor tolerance and high proportions of butanol for butanol production[J]. Chinese Journal of Bioprocess Engineering, 12(1): 23-27. [17] Huang H B, Singh V, Qureshi N.2015. Butanol production from food waste: A novel process for producing sustainable energy and reducing environmental pollution[J]. Biotechnology for Biofuels, 8(1): 147. [18] Jiang M, Chen J N, He A Y, et al.2014. Enhanced acetone/butanol/ethanol production by Clostridium beijerinckii IB4 using pH control strategy[J]. Process Biochemistry, 49(8): 1238-1244. [19] Jones D T, Woods D R.1986. Acetone-butanol fermentation revisited[J]. Microbiological Reviews, 50(4): 484-524. [20] Khunchantuek C, Fiala K.2017. Optimization of key factors affecting butanol production from sugarcane juice by Clostridium beijerinckii TISTR 1461[C] International Conference on Alternative Energy in Developing Countries and Emerging Economies, 138:157-162. [21] Li H-g, Luo W, Gu Q-y, et al.2013. Acetone, butanol, and ethanol production from cane molasses using Clostridium beijerinckii mutant obtained by combined low-energy ion beam implantation and N-methyl-N-nitro-N-nitrosoguanidine induction[J]. Bioresource Technology, 137: 254-260. [22] Liu J, Guo T, Wang D, et al.2016a. Enhanced butanol production by increasing NADH and ATP levels in Clostridium beijerinckii NCIMB 8052 by insertional inactivation of Cbei_4110[J]. Applied Microbiology and Biotechnology, 100(11): 4985-4996. [23] Liu J, Guo T, Shen X, et al.2016b. Engineering Clostridium beijerinckii with the Cbei_4693 gene knockout for enhanced ferulic acid tolerance[J]. Journal of Biotechnology, 229: 53-57. [24] Liu J, Lin Q, Chai X, et al.2018a. Enhanced phenolic compounds tolerance response of Clostridium beijerinckii NCIMB 8052 by inactivation of Cbei_3304[J]. Microbial Cell Factories,,17(1): 35. [25] Liu Z Y, Yao X Q, Zhang Q, et al.2017. Modulation of the acetone/butanol ratio during fermentation of corn stover derived hydrolysate by Clostridium beijerinckii strain NCIMB 8052[J]. Applied Biochemistry & Biotechnology, 83(7), DOI: 10.1128/AEM.03386-16. [26] Liu J, Liu Z, Guo T.2018b. Repeated-batch fermentation by immobilization of Clostridium beijerinckii NCIMB 8052 in a fibrous bed bioreactor for ABE (acetone-butanol-ethanol) production[J]. Journal of Renewable and Sustainable Energy, 10(1): 013101. [27] Lu C, Yu L, Varghese S, et al.2017. Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adhE2 and ctfAB[J]. Bioresource Technology, 243: 1000-1008. [28] Mai S, Wang G, Wu P, et al.2017. Interactions between Bacillus cereus CGMCC 1.895 and Clostridium beijerinckii NCIMB 8052 in coculture for butanol production under nonanaerobic conditions[J]. Biotechnology Applied Biochemistry, 64(5): 719-726. [29] Mosier N, Wyman C, Dale B, et al.2005. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 96(6): 673-686. [30] Okonkwo C C, Ujor V, Ezeji T C.2019. Chromosomal integration of aldo-keto-reductase and short-chain dehydrogenase/reductase genes in Clostridium beijerinckii NCIMB 8052 enhanced tolerance to lignocellulose-derived microbial inhibitory compounds[J]. Scientific Reports, 9(8):124-131. [31] Palmqvist E, HahnHagerdal B, Szengyel Z, et al.1997. Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment[J]. Enzyme and Microbial Technology, 20(4): 286-293. [32] Qureshi N, Singh V, Liu S, et al.2014. Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): Production of butanol from corn stover using Clostridium beijerinckii P260[J]. Bioresource Technology, 154: 222-228. [33] Qureshi N, Liu S, Hughes S, et al.2016. Cellulosic Butanol (ABE) Biofuel Production from Sweet Sorghum Bagasse (SSB): Impact of Hot Water Pretreatment and Solid Loadings on Fermentation Employing Clostridium beijerinckii P260[J]. Bioenergy Research, 9(4): 1167-1179. [34] Sandoval-Espinola W J, Chinn M, Bruno-Barcena J M.2015. Inoculum optimization of Clostridium beijerinckii for reproducible growth[J]. FEMS Microbiol Letters, 362(19), DOI: 10.1093/femsle/fnv164. [35] Singh K, Gedam P S, Raut A N, et al.2017. Enhanced n-butanol production by Clostridium beijerinckii MCMB 581 in presence of selected surfactant[J]. 3 Biotech, 7(3): 1-7. [36] Sirisantimethakom L, Laopaiboon L, Sanchanda P, et al.2016. Improvement of butanol production from sweet sorghum juice by Clostridium beijerinckii using an orthogonal array design[J]. Industrial Crops and Products, 79: 287-294. [37] Survase S A, van Heiningen A, Granstrom T.2013. Wood pulp as an immobilization matrix for the continuous production of isopropanol and butanol[J]. Journal of Industrial Microbiology & Biotechnology, 40(2): 209-215. [38] Teymouri F, Laureano-Perez L, Alizadeh H, et al.2005. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover[J]. Bioresource Technology, 96(18): 2014-2018. [39] Thauer R K, Jungermann K, Decker K.1977. Energy-conservation in chemotropic anaerobic bacteria[J]. Bacteriological Reviews, 41(1): 100-180. [40] Ujor V, Agu C V, Gopalan V, et al.2014. Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation[J]. Applied Microbiology and Biotechnology, 98(14): 6511-6521. [41] Ujor V, Agu C V, Gopalan V, et al.2015. Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone-butanol-ethanol (ABE) fermentation[J]. Applied Microbiology and Biotechnology, 99(8): 3729-3740. [42] Vichuviwat R, Boonsombuti A, Luengnaruemitchai A, et al.2014. Enhanced butanol production by immobilized Clostridium beijerinckii TISTR 1461 using zeolite 13X as a carrier[J]. Bioresource Technology, 172: 76-82. [43] Visioli L J, Alves E A, Trindade A, et al.2015. Evaluation of biobutanol production by Clostridium beijerinckii NRRL B-592 using sweet sorghum as carbon source[J]. Ciencia Rural, 45(9): 1707-1712. [44] Wang Y, Blaschek H P.2011. Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052[J]. Bioresource Technology, 102(21): 9985-9990. [45] Wang Y R, Chiang Y S, Chuang P J, et al.2016. Direct in situ butanol recovery inside the packed bed during continuous acetone-butanol-ethanol (ABE) fermentation[J]. Applied Biochemistry Biotechnology, 100(17): 7449-7456. [46] Wen Z, Wu M, Lin Y, et al.2014a. A novel strategy for sequential co-culture of Clostridium thermocellum and Clostridium beijerinckii to produce solvents from alkali extracted corn cobs[J]. Process Biochemistry, 49(11): 1941-1949. [47] Wen Z, Wu M, Lin Y, et al.2014b. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans[J]. Microbial Cell Factories, 13(1): 92. [48] Ying H, Wang D, Xie J, et al.2014. New recombinant strain used for high yield fermentative butanol production, obtained by inserting gene encoding NADH-coenzyme Q oxidoreductase critical subunit into Clostridium beijerinckii with insertional inactivated Cbei_4110 gene [P] China,103820367-A. [49] Zhang C, Li T, He J.2018a. Characterization and genome analysis of a butanol-isopropanol-producing Clostridium beijerinckii strain BGS1[J]. Biotechnology for Biofuels, 11: 280. [50] Zhang J, Jia B.2018. Enhanced butanol production using Clostridium beijerinckii SE-2 from the waste of corn processing[J]. Biomass & Bioenergy, 115: 260-266. [51] Zhang W L, Liu Z Y, Liu Z, et al.2012. Butanol production from corncob residue using Clostridium beijerinckii NCIMB 8052[J]. Letters in Applied Microbiology, 55(3): 240-246. [52] Zhang W L, Liu Z Y, Liu Z, et al.2012. Butanol production from corncob residue using Clostridium beijerinckii NCIMB 8052[J]. Letters in Applied Microbiology, 55(3): 240-246. [53] Zhang C, Li T G, He J Z.2018b. Characterization and genome analysis of a butanol-isopropanol-producing Clostridium beijerinckii strain BGS1[J]. Biotechnology Biofuels, 11(1): 280. [54] Zingaro K A, Nicolaou S A, Papoutsakis E T.2013. Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing[J]. Trends in Biotechnology, 31(11): 643-653. |
|
|
|