|
|
Genetic Diversity Analysis of Fejervarya multistriata Population in Fanjingshan Region Based on 12S rRNA Sequence |
WU Zhen-Yang1, LI Li1, ZHANG Lei1, QIU Fa-Gen1, YANG Shi-Long1, E Guang-Xin2,* |
1 Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren 554300, China; 2 College of Animal Science and Technology, Southwest University, Chongqin 400715, China |
|
|
Abstract Fanjing mountain is the main peak of Wuling mountain range. It has rich amphibian diversity due to its diverse climate types and superior hydrothermal conditions. However, the related research mainly concentrated in the 1980's, and mostly based on field investigation. Therefore, it is urgent to evaluate the genetic diversity of amphibians in Fanjingshan region by using mitochondrial genes as analytical markers. To evaluate the genetic diversity of Fejervarya multistriata in the surrounding area of Fanjing mountain, the influence of the specific geographical environment of Fanjing mountain on its survival status, and to provide scientific basis for further protection and utilization of genetic resources of F. multistriata, the present study used partial sequences of mitochondrial DNA (mtDNA) 12S rRNA as molecular markers, 185 samples from 10 districts and counties in Fanjingshan area were sequenced and the genetic diversity was analyzed. The results showed that nucleotide diversity index Pi and haplotype diversity (Hd) were 0.029 42±0.000 34 and 0.563±0.017, respectively. Ten haplotypes were found, and the dominant haplotypes were haplotype 1 and 2, followed by haplotype 8, accounting for 36.76%, 44.32% and 12.43% of the total sample, respectively. Haplotype 1 and haplotype 8 were mainly composed of the populations east of Fanjing mountain, while haplotype 2 mainly existed in the population west of Fanjing mountain. Haplotype network mediation diagram showed that dominant haplotype 1 and haplotype 8 gathered into one class, and haplotype 2 gathered into another class. Hoplobatrachus chinensis and Nanorana ventripunctata were used as extranet to construct a haplotype systemic-occurrence tree, and the haplotype clustering analysis indicated that the haplotype cluster of Hoplobatrachus chinensis and F. multistriata were together, and the haplotype cluster of F. multistriata was divided into 2 subbranches, which was consistent with the results of haplotype network map and population phylogenetic tree, that was, the 10 populations of the F. multistriata could be divided into 2 branches as east and west of Fanjing mountain, indicating that it might be caused by the geographical isolation of Fanjing mountain vein. The fixed coefficient Fst indicated that the population differentiation degree was obvious in F. multistriata population. Analysis of molecular variance (AMOVA) showed that the genetic variation was mainly between populations (86.14%), while the genetic variation within populations was low (13.86%). Comprehensive analysis showed that the genetic diversity among different geographic populations of F. multistriata was relatively low, and genetic differentiation was obvious, which might be mainly due to the geographical isolation of complex landforms and mountains. The above results have some reference value for further research on the influence of complex geographical environment and climatic characteristics of Fanjing moutain area (such as the obvious vertical climate zone spectrum) on other amphibians.
|
Received: 19 May 2020
|
|
Corresponding Authors:
*eguangxin@126.com
|
|
|
|
[1] 费梁, 叶昌媛. 1984. 梵净山峨嵋髭蟾的生物学和生态学[J]. 动物学杂志, (04): 1-4. (Fei L, Ye C Y. 1984. Biology and ecology of Oreolalax omeimontis in Fanjing mountain[J]. Chinese Journal of Zoology, (04): 1-4.) [2] 胡淑琴, 赵尔宓, 刘承钊. 1973. 贵州省两栖爬行动物调查及区系分析[J]. 动物学报, 19(2): 149-181. (Hu S Q, Zhao E M, Liu Z C.1973. A survey of amphibians and reptiles in Kweichow province, including a herpetofaunal analysis[J]. Acta Zoologica Sinica, 19(2): 149-181.) [3] 黄永杰. 2017. 基于线粒体DNA和微卫星标记的务川臭蛙种群遗传结构及分子系统发生研究[D]. 硕士学位论文, 中国林业科学研究院, 导师: 林英华, pp. 35-36. (Huang Y J.2017. Population genetic structure and molecular phylogenetic analysis of Wuchuan Odorous frog based on mtDNA and microsatellite markers[D]. Thesis for M.S., Chinese Academy of Forestry, Supervisor: Lin Y H, pp. 35-36.) [4] 李德俊. 1982. 梵净山两栖爬行动物种类分布及其区系成分[M]. 贵阳: 贵州环境保护局, pp. 1-10. (Li D J.1982. Species Distribution and Floristic Components of Amphibians and Reptiles in Fanjing Mountain[M]. Guizhou Environmental Protection Bureau, Guiyang, China, pp. 1-10.) [5] 李学龙. 2015. 东北粗皮蛙线粒体DNA遗传多样性分析[D]. 硕士学位论文, 沈阳师范大学, 导师: 杨宝田, pp. 24-25. (Li X L.2015. Genetic diversity of the population of Rugosa emeljanowi based on mitochondrial DNA sequences[D]. Thesis for M.S., Shenyang Normal University, Supervisor: Yang B T, pp. 24-25.) [6] 刘承钊, 胡淑琴, 费梁. 1979. 中国锄足蟾科五个新种[J]. 动物分类学报, 4(1): 83-98. (Liu C Z, Hu S Q, Fei L.1979. Five new pelobatid toads from China[J]. Acta Zootaxonomica Scinica, 4(1): 83-98.) [7] 刘忠权. 2003. 中国泽蛙线粒体基因组结构及种群系统地理学研究[D]. 博士学位论文, 南京师范大学, 导师: 王义权, pp. 79-80. (Liu Z Q.2003. The composition of mitochondrial genome and phylogeography of the rice frog from China, Fejervarya limnocharis[D]. Thesis for Ph.D., Nanjing Normal University, Supervisor: Wang Y Q, pp. 79-80.) [8] 吕敬才, 李仕泽, 牛克锋, 等. 2017. 梵净山国家级自然保护区两栖动物多样性及区系组成[J]. 贵州农业科学, 45(01): 148-152. (Lv J C, Li S Z, Niu K F, et al.2017. Amphibian diversity and faunal analysis in Fanjingshan national nature reserve[J]. Guizhou Agricultural Sciences, 45(01): 148-152.) [9] 伍律. 1979. 贵州脊椎动物分布名录(两栖纲)[M]. 贵阳: 贵州人民出版社, pp. 17-24. (Wu L.1979. Distribution Catalogue of Vertebrates in Guizhou (amphibian)[M]. Guizhou People Press, Guiyang, China, pp. 17-24.) [10] 伍律. 1983. 贵州两栖类新纪录及蛙属一新种[J]. 动物学报, 29(1): 66-70. (Wu L.1983. A new species of Rana and records of amphibians from Guizhou province[J]. Acta Zoologica Sinica, 29(1): 66-70.) [11] 伍律, 董谦, 须润华. 1987. 贵州两栖志[M]. 贵阳: 贵州人民出版社, pp. 1-4. (Wu L, Dong Q, Xu R H.1987. Amphibian of Guizhou[M]. Guizhou People Press, Guiyang, China, pp. 1-4.) [12] 杨坤. 2018. 舟山群岛两种蛙类比较分子系统地理学研究[D]. 硕士学位论文, 中国计量大学, 导师: 金园婷, pp.19-20. (Yang K.2018. Studies on the comparative molecular phylogeography of two frogs in Zhoushan Archipelago[D]. Thesis for M.S., China Jiliang University, Supervisor: Jin Y T, pp. 19-20.) [13] 杨媛雯. 2014. 峨眉髭蟾的遗传多样性及其地理分化[D]. 硕士学位论文, 贵州师范大学, 导师: 周江, pp. 24-25. (Yang Y W.2014. The genetic diversity and geographical differentiation of V. boringii[D]. Thesis for M.S., Guizhou Normal University, Supervisor: Zhou J, pp. 24-25.) [14] 于佳琳. 2017. 东北雨蛙线粒体DNA遗传多样性的研究[D]. 硕士学位论文, 沈阳师范大学, 导师: 董丙君, pp.19-20. (Yu J L.2017. Genetic diversity of the population of Hyla japonica based on mitochondrial DNA sequences[D]. Thesis for M.S., Shenyang Normal University, Supervisor: Dong B J, pp. 19-20.) [15] 张雷, 陈红, 曾强. 2010. 贵州省两栖动物新纪录—白线树蛙[J]. 动物学杂志, 45(03): 159-162. (Zhang L, Chen H, Zeng Q.2010. A new amphibian record in Guizhou province Rhacophorus leucofasciatus[J]. Chinese Journal of Zoology, 45(03): 159-162.) [16] 张雷, 梁琍, 冉辉, 等. 2012. 角蟾科一新亚种—炳灵角蟾梵净山亚种[J]. 动物学杂志, 47(04): 135-138. (Zhang L, Liang L, Ran H, et al.2012. Megophrys binlingensis fanjingmontis: A new subspecies of megophryidae from Guizhou, China[J]. Chinese Journal of Zoology, 47(04): 135-138.) [17] 张雷, 冉辉, 沈正雄, 等. 2010. 贵州省两栖动物新纪录—镇海林蛙[J]. 安徽农业科学, 38(26): 14442. (Zhang L, Ran H, Sheng Z X, et al.2010. A new record amphibians in Guizhou province Rana zhenhai[J]. Journal of Anhui Agriculture Science, 38(26): 14442.) [18] 张雷. 2008. 梵净山国家自然保护区两栖动物分类修订[J]. 铜仁学院学报, (05): 123-126. (Zhang L. 2008. Classification revision of the amphibious animals in the State Nature Reserves, Fanjingsan mountain[J]. Journal of Tongren University, (05): 123-126.) [19] Avise J C.2009. Phylogeography: Retrospect and prospect[J]. Journal of Biogeography, 36(1): 3-15. [20] Bandeltt H J, Forster P, Rohl A.1999. Median-joining networks for inferring intraspecific phylogenies[J].Molecular Biology and Evolution , 16(1): 37-48. [21] Cai Y T, Ma L, Xu C J, et al.2018. The complete mitochondrial genome of the hybrid of Hoplobatrachus chinensis (female) H. rugulosus (male) and its phylogeny[J]. Mitochondrial DNA B, 3(1): 344-345. [22] Excoffier L, Laval G, Schneider S.2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics, 23(1): 47-50. [23] Fazalova V, Nevado B, Peretol C T, et al.2010. When environmental changes do not cause geographic separation of fauna: Differential responses of Baikalian invertebrates[J]. BMC Evolutionary Biology, 10(1): 1-11 [24] Fouquet A, Ledoux J B, Dubut V, et al.2012. The interplay of dispersal limitation, rivers, and historical events shapes the genetic structure of an Amazonian frog[J]. Biological Journal of the Linnean Society, 106(2): 356-373. [25] Grant W A S, Bowen B W.1998. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 89(5): 415-426. [26] Hewitt G.2000. The genetic legacy of the Quaternary ice ages[J]. Nature, 405(6789): 907-913. [27] Hughes A R, Inouye B D, Johnson M T, et al.2008. Ecological consequences of genetic diversity[J]. Ecology Letters, 11(6): 609-623. [28] Islam M M, Kurose N, Khan M R, et al.2008. Genetic divergence and reproductive isolation in the Genus fejervarya (Amphibia: Anura) from bangladesh inferred from morphological observations, crossing experiments, and molecular analyses[J]. Zoological Science, 25(11): 1084-1085. [29] Kearney M, Spinndler J, Shao W, et al.2011. Genetic diversity of simian immunodeficiency virus encoding HIV-1 reverse transcriptase persists in macaques despite antiretroviral therapy[J]. Journal of Virology, 85(2): 1067-1076. [30] Kelley S T, Farrell B D, Mitton J B.2000. Effects of specialization on genetic differentiation in sister species of bark beetles[J]. Heredity, 84(2): 218-227. [31] Kraytsberg Y, Scheartz M, Brown A.2004. Recombination of human mitochondrial DNA[J]. Science, 304(14): 981-984. [32] Lee S K, Owens G A, Veeramachaneni D N R.2005. Exposure to low concentrations of di-n-butyl phthalate during embryogenesis reduces survivability and impairs development of Xenopus laevis frogs[J]. Journal of Toxicology and Environmental Health, Part A, 68(10): 763-772. [33] Li B, Zhang W, Shu X.2016. The impacts of urbanization on the distribution and body condition of the rice-paddy frog (Fejervarya multistriata) and gold-striped pond frog (Pelophylax plancyi) in Shanghai, China[J]. Asian Herpetological Research, 7(3): 200-209. [34] Librado P, Rozas J.2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 25(11): 1451-1452. [35] Rousset F.1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance[J]. Genetics, 145(4): 1219-1228 [36] Sumida M, Konda Y, Kanamori Y, et al.2002. Inter- and intraspecific evolutionary relationships of the rice frog Rana limnocharis and the allied species R. cancrivora inferred from crossing experiments and mitochondrial DNA sequences of the 12S and 16S rRNA genes[J]. Molecular Phylogenetics and Evolution, 25(2): 293-305. [37] Sumida M, Kotaki M, Islam M M, et al.2007. Evolutionary relationships and reproductive isolating mechanisms in the rice frog (Fejervarya limnocharis) species complex from Sri Lanka, Thailand, Taiwan and Japan, inferred from mtDNA gene sequences, allozymes, and crossing experiments[J]. Zoological Science, 24(6): 547-562. [38] Tamura K, Peterson D, Peterson N.2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 28(10): 2731-2739 [39] Yu D, Zhang J, Zheng R, et al.2012. The complete mitochondrial genome of Hoplobatrachus rugulosus (Anura: Dicroglossidae)[J]. Mitochondrial DNA, 23(5): 336-337. [40] Zhang P, Liang D, Mao R L, et al.2013. Efficient sequencing of Anuran mtDNAs and a mitogenomic exploration of the phylogeny and evolution of frogs[J]. Molecular Biology and Evolution, 30(8): 1899-1915. [41] Zhong J, Liu Z Q, Wang Y Q, et al.2008. Phylogeography of the rice frog, Fejervarya multistriata (Anura: Ranidae), from China based on mtDNA D-loop sequences[J]. Zoological Science, 25(8): 811-820. |
|
|
|