|
|
The Expression Pattern and Molecular Regulatory Mechanism of miRNA in Mastitis of Dairy Cows (Bos taurus) |
YANG Jian, WANG Xing-Ping, LUORENG Zhuo-Ma*, HU Qi-Chao, JIA Li, MA Yun, WEI Da-Wei |
School of Agriculture,Ningxia University,Yinchuan 750021,China |
|
|
Abstract Cow (Bos taurus) mastitis is an inflammatory disease caused by pathogenic microorganism infection,trauma or other factors in mammary gland tissue. It has complex causes,high incidence and expensive treatment cost,which seriously restricts the development of dairy industry. MicroRNA (miRNA) can regulate the expression of messenger RNA (mRNA) at the post-transcriptional level,thus regulating biological processes including body immunity. In recent years,it has been found that miRNA played an important role in the occurrence and development of mastitis in dairy cows. In this paper,the expression pattern and molecular regulation mechanism of miRNA in mammary tissue,peripheral blood,milk of different types of mastitis cows and pathogenic bacteria-induced mammary epithelial cells were reviewed,and the problems that need to be solved were analyzed and prospected,which will provide reference for researchers to further understand the related fields.
|
Received: 11 March 2020
|
|
Corresponding Authors:
*luorenzhuoma@nxu.edu.cn
|
|
|
|
[1] 陈玲.2016.LPS刺激的奶牛乳腺上皮细胞转录组和miRNA表达谱变化规律的研究[D].博士学位论文,西北农林科技大学,导师:刘小林,pp.69-92 (Chen L.2016.Characterization of mRNA and miRNA profiles in LPS-challenged bMECs revealsan dynamic inflammatory response during dairy mastitis[D].Thesis for Ph.D.,Northwest A&F University,Supervisor:Liu X L,pp.69-92.) [2] 郝俊芳,黄凯,王月影,等.2016.炎症相关miRNAs在LPS诱导的小鼠乳腺上皮细胞炎性反应中的表达及miR-223真核表达载体的构建[J].畜牧兽医学报,47(01):183-189. (Hao J F,Huang K,Wang Y Y,et al.2016.Expression of inflammation-related miRNAs in the LPS-induced inflammation in murine mammary epithelial cells and construction of miR-223 eukaryotic expression vector[J].Chinese Journal of Animal and Veterinary Sciences,47(01):183-189.) [3] 罗仍卓么.2018.奶牛乳腺炎差异表达基因筛选及miR-146a在乳腺上皮细胞炎症反应中的功能研究[D].博士学位论文,西北农林科技大学,导师:昝林森.pp.14-103. (LuoReng Z M.2018.Screening of differentially expressed genes related to mastitis in dairy cows and the function of miR-146a in bMEC inflammatory response[D].Thesis for Ph.D.,Northwest A&F University,Supervisor:Zan L S,pp.14-103.) [4] 蒲俊华.2017.奶牛链球菌型乳腺炎乳腺组织基因表达与microRNA分析及miR-122对EPO和JAK-STAT通路靶向调控[D].博士学位论文,扬州大学,导师:杨章平,pp.29-94. (Pu J H.2017.Expression profiles of genes and microRNAs from bovine mammary glands in response toStreptococcus agalatiae-induced mastitis and regulation ofmiR-122on EPO and JAK-STAT pathway[D].Thesis for Ph.D.,Yangzhou University,Supervisor:Yang Z P,pp.24-94.) [5] 王梦琦,倪炜,张慧敏,等.2017.中国荷斯坦牛TLR1基因启动子区SNP多态与乳房炎抗性和泌乳性状的关联分析[J].农业生物技术学报,25(03):397-404. (Wang M Q,Ni W,Zhang H M,et al.2017.Correlation between the mutation of SNPs in the promoter region of TLR1 and mastitis resistance and milking traits in Chinese holstein (Bos taurus)[J].Journal of Agricultural Biotechnology,25(03):397-404.) [6] 王小龙,李锐,毛永江,等.2016.金黄色葡萄球菌感染前后奶牛乳腺组织中bta-miR-146a差异表达分析[J].家畜生态学报,37(8):55-60. (Wang X L,Li R,Mao Y J,et al.2016.Differential expression analysis ofbta-miR-146ain bovine mammary gland tissues withStaphylococcus aureusinfection[J].Journal of Domestic Animal Ecology,37(8):55-60.) [7] 王晓,张勤,俞英.2017.基于体细胞评分的中国荷斯坦牛乳房炎抗性全基因组关联分析[J].中国农业科学,50(04):755-763. (Wang X,Zhang Q,Yu Y.2017.Genome-wide association study on mastitis resistance based on somatic cell scores in Chinese holstein cows[J].Scientia Agricultura Sinica,50(04):755-763.) [8] 谢海涛.2012.miR-145抑制结肠癌的实验研究[D].博士学位论文,广州中医药大学,导师:庄俊华,pp.40-60. (Xie H T.2012.The study of miR-145 inhibiting the proliferation of colon cancer[D].Thesis for Ph.D.,Guangzhou University of Chinese Medicine,Supervisor:Zhuang J H,pp.40-60.) [9] 绪欣.2018.miR-145靶向FSCN1调控奶牛金葡菌型乳腺炎的分子功能初步探讨[D].硕士学位论文,扬州大学,导师:杨章平.pp.21-52 (Xu X.2018.The preliminary discussion of molecular function ofmir-145targetingFSCN1to regulate theS.aureusmastitis of dairy cows[D].Thesis for M.S.,Yangzhou University,Supervisor:Yang Z P,pp.21-52.) [10] 张伟伟.2010.miR-145通过调节单核巨噬细胞增殖/凋亡平衡参与调控慢性炎症过程[D].博士学位论文,复旦大学,导师:胡仁明.pp.12-57 (Zhang W W.2010.miR-145 participates in the regulation of chronic inflammatory process by regulating the proliferation/apoptosis balance of monocyte macrophages[D].Thesis for Ph.D.,Fudan University,Supervisor:Hu R M,pp.12-57.) [11] 张振彪.2017.硒通过microRNA 155调控金黄色葡萄球菌性乳腺炎发生的作用机制研究[D].硕士学位论文,华中农业大学,导师:邓干臻.pp.11-37. (Zhang Z B.2017.The mechanism of selenium onStaphylococcus aureusmastitis viamicroRNA-155regulating[D].Thesis for M.S.,Huazhong Agricultural University,Supervisor:Deng G Z,pp.11-37.) [12] 赵俭.2019.miR-145靶向PXN调控奶牛乳腺炎发病分子机制初探[D].硕士学位论文,河南科技学院,导师:安志兴,张晓建,pp.11-59. (Zhao J.2019.Study of the molecular mechanisms ofmiR-145targetingPXNin the regulation of dairy cow mastitis pathogenesis[D].Thesis for M.S.,Henan Institute of Science and Technology,Supervisor:An Z X,Zhang X J,pp.11-59.) [13] Ameres S L,Martinez J,Schroeder R.2007.Molecular basis for target RNA recognition and cleavage by human RISC[J].Cell,130(1):101-112. [14] Bartel D P.2009.MicroRNAs:target recognition and regulatory functions[J].Cell,136(2):215-33. [15] Berindan-Neagoe I,Monroig P D C,Pasculli B,et al.2014.MicroRNAome genome:A treasure for cancer diagnosis and therapy[J].CA:A Cancer Journal for Clinicians,64(5):311-336. [16] Bi Y J,Liu G W,Yang R F.2009.MicroRNAs:Novel regulators during the immune response[J].Journal of Cellular Physiology,218(3):467-472. [17] Carrington J C,Ambros V.2003.Role of microRNAs in plant and animal development[J].Science,301(5631):336-8. [18] Chen K L,Li L,Li C M,et al.2019c.SIRT7 Regulates lipopolysaccharide-induced inflammatory injury by suppressing the NF-κB signaling pathway[J].Oxidative Medicine and Cellular Longevity,2019:3187972. [19] Chen L,Liu X,Li Z X,et al.2014.Expression differences of miRNAs and genes on NF-κB pathway between the healthy and the mastitis Chinese holstein cows[J].Gene,545(1):117-125. [20] Chen Q,Hou J,Wu Z W,et al.2019b.miR-145regulates the sensitivity of esophageal squamous cell carcinoma cells to 5-FU via targetingREV3L[J].Pathology ,Research and Practice,215(7):152427. [21] Chen Z,Zhou J P,Wang X L,et al.2019a.Screening candidatemicroR-15a-IRAK2regulatory pairs for predicting the response toStaphylococcus aureus-induced mastitis in dairy cows[J].Journal of Dairy Research,86(4):425-431. [22] Chu Q,Sun Y N,Cui J X,et al.2017.InduciblemicroRNA-214contributes to the suppression of NF-κB-mediated inflammatory response via targetingmyd88gene in fish[J].Journal of Biological Chemistry,292(13):5282-5290. [23] Correia De Sousa M,Gjorgjieva M,Dolicka D,et al.2019.Deciphering miRNAs' action through miRNA editing[J].International Journal of Molecular Sciences,20(24):6249. [24] Dai Y,Jia P,Fang Y,et al.2016.miR-146ais essential for lipopolysaccharide (LPS)-induced cross-tolerance against kidney ischemia/reperfusion injury in mice[J].Scientific Reports,6:27091. [25] Dilda F,Gioia G,Pisani L,et al.2012.Escherichia colilipopolysaccharides andStaphylococcus aureusenterotoxin B differentially modulate inflammatory microRNAs in bovine monocytes[J].The Veterinary Journal,192(3):514-516. [26] Elmesmari A,Fraser A R,Wood C,et al.2016.MicroRNA-155regulates monocyte chemokine and chemokine receptor expression in rheumatoid arthritis[J].Rheumatology,55(11):2056-2065. [27] Fang L Z,Hou Y,An J,et al.2016.Genome-wide transcriptional and post-transcriptional regulation of innate immune and defense responses of bovine mammary gland toStaphylococcus aureus[J].Frontiers in Cellular and Infection Microbiology,6:193. [28] Friedman R C,Farh K K,Burge C B,et al.2009.Most mammalian mRNAs are conserved targets of microRNAs[J].Genome Research,19(1):92-105. [29] Gao M,Wang X H,Zhang X,et al.2015.Attenuation of cardiac dysfunction in polymicrobial sepsis bymicroRNA-146ais mediated via targeting ofIRAK1andTRAF6expression[J].Journal of Immunology,195(2):672-82. [30] Garzon R,Marcucci G,Croce C M.2010.Targeting microRNAs in cancer:Rationale,strategies and challenges[J].Nature Reviews Drug Discovery,9(10):775-789. [31] Hammond S M.2015.An overview of microRNAs[J].Advanced Drug Delivery Reviews,87:3-14. [32] Haneklaus M,Gerlic M,O'Neill L A,et al.2013.miR-223:Infection,inflammation and cancer[J].Journal of Internal Medicine,274(3):215-26. [33] Hou Q L,Huang J M,Ju Z H,et al.2012.Identification of splice variants,targeted microRNAs and functional single nucleotide polymorphisms of theBOLA-DQA2gene in dairy cattle[J].Dna and Cell Biology,31(5):739-744. [34] Jiang Q,Zhao H,Li R L,et al.2019.In silico genome-wide miRNA-QTL-SNPs analyses identify a functional SNP associated with mastitis in holsteins[J].BMC Genetics,20(1):46. [35] Ju Z H,Jiang Q,Liu G,et al.2018.Solexa sequencing and custom microRNA chip reveal repertoire of microRNAs in mammary gland of bovine suffering from natural infectious mastitis[J].Animal Genetics,49(1):3-18. [36] Ju Z H,Jiang Q,Wang J P,et al.2020.Genome-wide methylation and transcriptome of blood neutrophils reveal the roles of DNA methylation in affecting transcription of protein-coding genes and miRNAs inE.coli-infected mastitis cows[J].BMC Genomics,21(1):102. [37] Kim G,Ng H P,Patel N,et al.2019.Kruppel-like factor 6 andmiR-223signaling axis regulates macrophage-mediated inflammation[J].official publication of the Federation of American Societies for Experimental Biology,33(10):10902-10915. [38] Lai Y C,Fujikawa T,Maemura T,et al.2017.Inflammation-related microRNA expression level in the bovine milk is affected by mastitis[J].PLoS One,12(5):e0177182. [39] Lee R C,Feinbaum R L,Ambros V.1993.TheC.elegansheterochronic genelin-4encodes small RNAs with antisense complementarity to lin-14[J].Cell,75(5):843-854. [40] Li L B,Chen X L,Chen Z S.2019.Identification of key candidate genes in dairy cow in response toEscherichia colimastitis by bioinformatical analysis[J].Frontiers in Genetics,10:1251. [41] Li L M,Huang J M,Ju Z H,et al.2013b.Multiple promoters and targeted microRNAs direct the expressions ofHMGB3gene transcripts in dairy cattle[J].Animal Genetics,44(3):241-250. [42] Li L M,Huang J M,Zhang X J,et al.2012.One SNP in the 3'-UTR ofHMGB1gene affects the binding of target bta-miR-223and is involved in mastitis in dairy cattle[J].Immunogenetics,64(11):817-824. [43] Li R M,Shen Q W,Wu N,et al.2018.miR-145improves macrophage-mediated inflammation through targeting Arf6[J].Endocrine,60(1):73-82. [44] Li R,Zhang C L,Liao X X,et al.2015.Transcriptome microRNA profiling of bovine mammary glands infected withStaphylococcus aureus[J].International Journal of Molecular Sciences,16(3):4997-5013. [45] Li S,Yue Y,Xu W,et al.2013a.MicroRNA-146arepresses mycobacteria-induced inflammatory response and facilitates bacterial replication via targetingIRAK-1andTRAF-6[J].PLoS One,8(12):e81438. [46] Li Z X,Wang H L,Chen L,et al.2014.Identification and characterization of novel and differentially expressed microRNAs in peripheral blood from healthy and mastitis holstein cattle by deep sequencing[J].Animal Genetics,45(1):20-27. [47] Liao Y L,Du X G,Lonnerdal B.2010.miR-214 regulates lactoferrin expression and pro-apoptotic function in mammary epithelial cells[J].Journal of Nutrition,140(9):1552-6. [48] Liu J,Ma Z H,Ran Z L.2019.miR-21-3p modulates lipopolysaccharide-induced inflammation and apoptosis via targetingTGS4in retinal pigment epithelial cells[J].Clinical and Experimental Pharmacology and Physiology,46(10):883-889. [49] Luoreng Z M,Wang X P,Mei C G,et al.2018a.Expression profiling of peripheral blood miRNA using RNAseq technology in dairy cows withEscherichia coli-induced mastitis[J].Scientific reports,8(1):12693. [50] LuoReng Z M,Wang X P,Zan L S.2018b.Comparison of microRNA profiles between bovine mammary glands infected withStaphylococcus aureusandEscherichia coli[J].International Journal of Biological Science,14(1):87-99. [51] Lv L L,Feng Y,Wu M,et al.2019.ExosomalmiRNA-19b-3pof tubular epithelial cells promotes M1 macrophage activation in kidney injury[J].Cell Death and Differentiation,27(1):210-226. [52] Ma L,Li L L.2019.miR-145 contributes to the progression of cervical carcinoma by directly regulating FSCN1[J].Cell Transplantation,28(9-10):1299-1305. [53] Ma S Y,Tong C,Ibeagha-Awemu E M,et al.2019.Identification and characterization of differentially expressed exosomal microRNAs in bovine milk infected withStaphylococcus aureus[J].BMC Genomics,20(1):934. [54] Meisgen F,Xu L N,Wang A,et al.2014.miR-146anegatively regulatesTLR2-induced inflammatory responses in keratinocytes[J].Journal of Investigative Dermatology,134(7):1931-40. [55] Naeem A,Zhong K,Moisá S J,et al.2012.Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected withStreptococcus uberis[J].Journal of Dairy Science,95(11):6397-6408. [56] Orom U A,Nielsen F C,Lund A H.2008.MicroRNA-10abinds the 5'UTR of ribosomal protein mRNAs and enhances their translation[J].Molecular Cell,30(4):460-71. [57] Pu J H,Li R,Zhang C L,et al.2017.Expression profiles of miRNAs from bovine mammary glands in response toStreptococcus agalactiae-induced mastitis[J].Journal of Dairy Research,84(3):300-308. [58] Rohmeier L,Petzl W,Koy M,et al.2020.In vivomodel to study the impact of genetic variation on clinical outcome of mastitis in uniparous dairy cows[J].BMC Veterinary Research,16(1):33. [59] Shah M Y,Calin G A.2014.MicroRNAs as therapeutic targets in human cancers[J].Wiley Interdiscip Rev RNA,5(4):537-48. [60] Song N,Wang X P,Gui L S,et al.2017.MicroRNA-214regulates immunity-related genes in bovine mammary epithelial cells by targetingNFATc3andTRAF3[J].Molecular and Cellular Probes,35:27-33. [61] Sun J J,Aswath K,Schroeder S G,et al.2015.MicroRNA expression profiles of bovine milk exosomes in response toStaphylococcus aureusinfection[J].BMC Genomics,16(1):806. [62] Sun W J,Wang Q,Guo Y F,et al.2017.Selenium suppresses inflammation by inducingmicroRNA-146ainStaphylococcus aureus-infected mouse mastitis model[J].Oncotarget,8(67):110949-110964. [63] Sun X H,Icli B,Wara A K,et al.2012.MicroRNA-181bregulatesNF-κB-mediated vascular inflammation[J].Journal of Clinical Investigation,122(6):1973-90. [64] Sztachańska M,Barański W,Janowski T,et al.2016.Prevalence and etiological agents of subclinical mastitis at the end of lactation in nine dairy herds in north-east Poland[J].Polish Journal of Veterinary Sciences,19(1):119-124. [65] Taganov K D,Boldin M P,Chang K,et al.2006.NF-κB-dependent induction of microRNAmiR-146,an inhibitor targeted to signaling proteins of innate immune responses[J].Proceedings of the National Academy of Sciences of the USA,(33):12481-12486. [66] van den Borne B H P,Graber H U,Voelk V,et al.2017.A longitudinal study on transmission ofStaphylococcus aureusgenotype B in swiss communal dairy herds[J].Preventive Veterinary Medicine,136:65-68. [67] Wang X G,Huang J M,Feng M Y,et al.2014.Regulatory mutations in theA2Mgene are involved in the mastitis susceptibility in dairy cows[J].Animal Genetics,45(1):28-37. [68] Wang X P,Luoreng Z M,Zan L S,et al.2016.Expression patterns ofmiR-146aandmiR-146bin mastitis infected dairy cattle[J].Molecular and cellular probes,30(5):342-344. [69] Wang X P,Luoreng Z M,Zan L S,et al.2017.BovinemiR-146aregulates inflammatory cytokines of bovine mammary epithelial cells via targeting theTRAF6gene[J].Journal of Dairy Science,100(9):7648-7658. [70] Wu J M,Li X,Li D Q,et al.2020.MicroRNA-34family enhances wound inflammation by targetingLGR4[J].Journal of Investigative Dermatology,140(2):465-476. [71] Zeng Z G,Gong H H,Li Y,et al.2013.Upregulation ofmiR-146acontributes to the suppression of inflammatory responses in LPS-induced acute lung injury[J].Experimental Lung Research,39(7):275-282. [72] Zhao G,Jiang K F,Yang Y P,et al.2018b.The potential therapeutic role ofmiR-223in bovine endometritis by targeting the NLRP3 inflammasome[J].Frontiers in Immunology,9:1916. [73] Zhao H,Gong N J.2019.miR-20a regulates inflammatory in osteoarthritis by targeting theIκBβand regulatesNF-κBsignaling pathway activation[J].Biochemical and Biophysical Research Communications,518(4):632-637. [74] Zhao Y,Cong L,Lukiw W J.2018a.Plant and animal microRNAs (miRNAs) and their potential for inter-kingdom communication[J].Cellular and Molecular Neurobiology,38(1):133-140. [75] Zhu S,Pan W,Song X Y,et al.2012.The microRNAmiR-23bsuppresses IL-17-associated autoimmune inflammation by targetingTAB2,TAB3andIKK-alpha[J].Nature Medicine,18(7):1077-86. |
|
|
|