|
|
Study on the Function of Arginine Decarboxylase Gene TaADC in the Interaction Between Wheat (Triticum aestivum) and Puccinia triticina |
LI Tong-Tong2, SONG Shan-Shan2, WANG Qi2, HOU Chun-Yan1,2,3, WANG Dong-Mei1,2,3,* |
1 State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071000, China;
2 College of Life Sciences, Hebei Agricultural University, Baoding 071000, China;
3 Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding 071000, China |
|
|
Abstract Arginine decarboxylase (ADC) is a key enzyme in the synthesis of polyamines, which plays an important role in the resistance of plants to stress. In the early stage of this study, by analyzing the transcriptome database of wheat (Triticum aestivum) and leaf rust fungus (Puccinia triticina) interaction, it was screend that the expression of TaADC in the compatible and incompatible combinations was signifigant difference. On this basis, qRT-PCR detection showed that the expression of TaADC was induced by Puccinia triticina infection in the incompatible combination, not induced in the compatible combination. Transient transformation of recombinant plasmid 35S::TaADC-GFP into tobacco (Nicotiana tabacum) revealed that TaADC localized in the cytoplasm. Virus-induced gene silencing (VIGS) and RNA interference (RNAi) techniques were used to silence TaADC gene. Compared with TaADC non-silent plants (control), silent plants showed increased number of haustorium mother cells (HMC) and area of host hypersentive reaction (HR) in single infection site. The above results proved that TaADC might play an important role in the occurrence of HR in wheat resistance to Puccinia triticina infection. This study might provide new evidence for elucidating the molecular mechanism of HR in the interaction between wheat and Puccinia triticina.
|
Received: 18 January 2020
|
|
Corresponding Authors:
*houchunyan@126.com; dongmeiwang63@126.com
|
|
|
|
[1] 杜红阳.2015.干旱胁迫下小麦发育籽粒胚细胞内结合态多胺的功能[D].博士学位论文,河南农业大学,导师:杨青华,pp.10-13.
(Du H Y.2015.Fuctions of conjugated polyamines in the embryo cell of developing wheat grain under drought stress[D].Thesis for Ph.D.,Henan Agricultural University,Supervisor:Yang Q H,pp.10-13.)
[2] 洪林.2011.甘蓝型油菜精氨酸脱羧酶基因的克隆及原核表达[D].硕士学位论文,西南大学,导师:梁国鲁,魏文辉,pp.1-13.
(Hong L.2011.Molecular cloning and prokaryotic expression of ADC gene from Brassica napus L.[D].Thesis for M.S.,Southwest University,Supervisor:Liang G L,Wei W H,pp:1-13.)
[3] 李亚栋,默辉娟,王省芬,等.2013.棉花精氨酸脱羧酶基因GhADC1克隆与表达分析[J].棉花学报,25(4):291-299.
(Li Y D,Mo H J,Wang X F,et al.2013.Cloning and expression analysis of an arginine decarboxylase gene from Gossypium hirsutum[J].Cotton Science,25(4):291-299.)
[4] 刘好良,李彤彤,李楠楠,等.2018.TaGAD在小麦抵抗叶锈菌侵染中的作用[J].河北农业大学学报,41(06):12-16,27.
(Liu H L,Li T T,Li N N,et al.2018.Role of TaGAD in leaf rust resistance in wheat[J].Journal of Hebei Agricultural University,41(06):12-16,27.)
[5] 马瑛,刘静.2010.植物体中多胺代谢及其功能研究进展[J].陕西理工学院学报(自然科学版),26(2):47-54.
(Ma Y,Liu J.2010.Progress in metabolism and functions of polyamines in plants[J].Journal of Shaanxi University of Technology (Natural Science Edition).26(2):47-54.)
[6] 牛笑南.2015.TaCAMTA4在小麦与叶锈菌互作过程中的功能研究及其调控基因的转录组分析[D].硕士学位论文,河北农业大学,导师:王冬梅,pp.4-11.
(Niu X N.2015.Study on the function of TaCAMTA4 in the process of interaction between wheat and Puccinia triticina and de novo transcriptome analysis of TaCAMTA4 regulated genes[D].Thesis for M.S.,Hebei Agricultual University,Supervisor:Wang D M,pp.4-11.)
[7] 沈永娟,张辉,王倩,等.2018.植物中多胺的合成代谢及其分子生物学水平研究进展[J].保鲜与加工,18(06):165-169.
(Shen Y J,Zhang H,Wang Q,et al.2018.Research progress on synthesis metabolism and molecular biology of polyamines in plants[J].Storage and Process,18(06):165-169.)
[8] 孙嘉炜.2016.一个新的小麦富半胱氨酸受体激酶基因在抗叶锈病中的功能研究[D].硕士学位论文,河北农业大学,导师:王冬梅,pp.25.
(Sun J W.2016.A noval wheat cysteine-rich receptor-like kinase gene is involved in wheat resistance to Puccinia triticina infection[D].Thesis for M.S.,Hebei Agricultural University,Supervisor:Wang D M,pp.25.)
[9] 孙培培.2014.枳精氨酸脱羧酶基因PtADC抗逆功能解析及其调控因子分离与鉴定[D].博士学位论文,华中农业大学,导师:刘继红,pp.1-21.
(Sun P P.2014.Functional characterization of arginine decarboxylase gene PtADC from Poncirus trifolita and indentification of the regulators[D].Thesis for Ph.D.,Huazhong Agricultural University,Supervisor:Liu J H,pp.1-21.)
[10] 许红.2016.干旱胁迫下多胺对小麦种子萌发的影响及其机理研究[D].硕士学位论文,西北农林科技大学,导师:廖允成,pp.1-2.
(Xu H.2016.Effect of polyamine on seed germination of wheat under drought and mechanism research[D].Thesis for M.S.,Northwest A&F University,Supervisor:Liao Y C,pp.1-2.)
[11] Akiyama T,Jin S.2007.Molecular cloning and characterization of an arginine decarboxylase gene up-regulated by chilling stress in rice seedlings[J].Journal of Plant Physiology,164(5):645-654.
[12] Alcázar R,Altabella T,Marco F,et al.(2010).Polyamines:Molecules with regulatory functions in plant abiotic stress tolerance[J].Planta,231(6):1237-1249.
[13] Ana Isabel C M,Francisco Ignacio J R,Margarita R K,et al.2018.Down-regulation of arginine decarboxylase gene-expression results in reactive oxygen species accumulation in Arabidopsis[J].Biochemical and Biophysical Research Communications,506(4):1071-1077.
[14] Espasandin F D,Calzadilla P I,Maiale S J,et al.2018.Overexpression of the arginine decarboxylase gene improves tolerance to salt stress in Lotus tenuis plants[J].Journal of Plant Growth Regulation,37:156-165.
[15] Hidalgo-Castellanos J,Duque A S,Burgueño A,et al.2019.Overexpression of the arginine decarboxylase gene promotes the symbiotic interaction Medicago truncatula-Sinorhizobium meliloti and induces the accumulation of proline and spermine in nodules under salt stress conditions[J].Journal of Plant Physiology,241.DOI:10.1016/j.jplph.2019.153034
[16] Irène H,Gouesbet G,Amrani A E,et al.2004.Characterization of the two arginine decarboxylase (polyamine biosynthesis) paralogues of the endemic subantarctic cruciferous species Pringlea antiscorbutica and analysis of their differential expression during development and response to environmental stress[J].Gene (Amsterdam),342(2):199-209.
[17] Kim H S,Lee E J,Lim S T.2015.Self-enhancement of GABA in rice bran using various stress treatments[J].Food Chemistry,172(1):657-662.
[18] Kim N K,Kim B S,Hwang B K,et al.2013.Pepper arginine decarboxylase is required for polyamine and γ-aminobutyric acid signaling in cell death and defense response[J].Plant Physiology,162(4):2067-2083.
[19] Mendgen K,Hahn M.2002.Plant infection and the establishment of fungal biotrophy[J].Trends in Plant Science,7(8):352-356.
[20] Mur L A,Kenton P,Lloyd A J,et al.2008.The hypersensitive response; the centenary is upon us but how much do we know?[J].Journal of Experimental Botany,59(3):501-520.
[21] Rohringer R,Kim W K,Samborski D J,et al.1977.Calcofluor:An optical brightener for fluorescence microscopy of fungal plant parasites in leaves[J].Phytopathology,67:808-810.
[22] Shuang K,Lin C,Wei T,et al.2018.The arginine decarboxylase gene ADC1,associated to the putrescine pathway,plays an important role in potato cold-acclimated freezing tolerance as revealed by transcriptome and metabolome analyses[J].The Plant Journal,96(6):1283-1298.
[23] Walters D R.2003.Polyamines and plant disease[J].Phytochemistry (Amsterdam),64(1):97-107. |
|
|
|