|
|
Genetic Diversity and Origins of Four Chicken (Gallus domesticus) Breeds Based on Full Sequence of Cytb Gene |
TANG Xiu-Jun, JIA Xiao-Xu, FAN Yan-Feng, GE Qing-Lian, TANG Meng-Jun, CHEN Da-Wei, ZHANG Xiao-Yan, LU Jun-Xian, GAO Yu-Shi* |
Jiangsu Institute of Poultry Science, Yangzhou 225125, China |
|
|
Abstract Animal mitochondrial cytochrome b (Cytb) gene is an important functional protein-coding gene. Its evolutionary rate is moderate, a small gene segment contains genetic evolutionary information from within species to between species and even between families, which was considered as an ideal molecular marker for studying animal genetic polymorphism and systematic evolution. The aim of the study was to prove up the heredity polymorphism of Cytb gene on some indigenous chicken (Gallus domesticus) breeds. Four Jiangxi chicken breeds were used as materials, and the Cytb gene was amplified by using sequencing and the heredity polymorphism was analyzed. The results revealed that the complete sequence of Cytb was 1 143 bp, which had 12 SNPs and 9 haplotypes. The hap4 was found in four chicken breeds. Average number of nucleotide differences (K), haplotype diversity (Hd) and nucleotide diversity (Pi) of four chicken breeds were 1.971, 0.724 and 0.001 72, respectively; the K and Pi of Anyi Gray chicken were biggest, which were 3.105 and 0.002 72, respectively; the Hd of Baier Yellow chicken was biggest, which was 0.752; The K, Pi and Hd values of Silkies were all the lowest. The phylogenetic relationship and origin analysis of the four chicken species in the formation process showed that Silkies may originate from Gallus gallus spadiceus. Dongxiang Blue-eggshell chicken, Anyi Gray chicken and Baier Yellow chicken probably originated from Gallus gallus spadiceus and Gallus gallus murghi. The results of this study provide a theoretical basis for the protection, development and utilization of genetic resources of chicken breeds.
|
Received: 23 September 2019
|
|
Corresponding Authors:
*, yzutxj@163.com
|
|
|
|
[1] 包文斌, 陈国宏, 吴信生, 等. 2007. 中国红原鸡和泰国红原鸡遗传多样性分析[J]. 遗传, 29(5): 587-592. (Bao W B, Chen G H, Wu X S, et al.2007. Genetic diversity of red junglefowl (Gallus gallus spadiceus) in China and red junglefowl (Gallus gallus gallus) in Thailand[J]. Hereditas, 29(5): 587-592.) [2] 蔡欣, 雷初朝, 王珊, 等. 2012. 基于mtDNA cytb基因变异的中国黄牛品种间遗传关系分析分析[J]. 四川大学学报(自然科学版), 49(5): 1115-1120. (Cai X, Lei C Z, Wang S, et al.2012. Genetic relationship analysis of Chinese cattle breeds based on variation of mtDNA cytb gene[J]. Journal of Sichuan University(Natural Science Edition), 49(5): 1115-1120.) [3] 高玉时, 贾晓旭, 唐修君, 等. 2015. 基于线粒体基因组D-loop区全序列分析安义瓦灰鸡遗传多样性及其起源进化关系[J]. 农业生物技术学报, 23(7): 940-944. (Gao Y S, Jia X X, Tang X J, et al.2015. The genetic diversity and origin of anyi tile-like Chickens (Gallus Gallus domestiaus) based on mitochondrial DNA D-loop sequence[J]. Journal of Agricultural Biotechnology, 23(7): 940-944.) [4] 贾晓旭, 唐修君, 樊艳凤, 等. 2017.华东地区地方鸡品种mtDNA控制区遗传多样性[J]. 生物多样性, 25(5): 540-548. (Jia X X, Tang X J, Fan Y F, et al.2017. Genetic diversity of local chicken breeds in east China based on mitochondrial DNA D-loop region[J]. Biodiversity Science, 25(5): 540-548.) [5] 李辉, 易恒洁, 彭邦星, 等. 2013a. 贵州地方鸭品种Cytb基因的全序列测定与系统进化分析[J]. 贵州农业科学, 41(9): 12-14. (Li H, Yi H J, Peng B X, et al.2013. Complete sequence determination and phylogenetic analysis of Cytb gene in Guizhou native duck breeds[J]. Guizhou Agricultural Sciences, 41(9): 12-14.) [6] 李辉, 吴婵, 熊光源, 等. 2013b. 黔东南小香鸡Cytb基因遗传多态性及系统进化研究[J]. 江苏农业科学, 41(1): 21-22. (Li H, Wu C, Xiong G Y, et al.2013. Genetic polymorphism and phylogenetic evolution of Cytb gene in qiandongnan small sweet chicken[J]. Jiangsu Agricultural Sciences, 41(1): 21-22.) [7] 刘刚, 杜玲, 陆健, 等. 2016. 中国西南地区主要地方绵羊Cytb基因遗传多样性及系统进化的研究[J].农业生物技术学报, 4(5): 678-688. (Liu G, Du L, Lu J, et al.2016. The genetic diversity and phylogenetic relationship among Chinese main indigenous sheep (Ovis areis) in southwest regions based on Cytb gene[J]. Journal of Agricultural Biotechnology, 24(5): 678-68.) [8] 吕雪峰, 阿布力孜·阿布力米提, 宫平, 等. 2015. 鹅喉羚线粒体D-loop和Cytb序列遗传多样性分析[J]. 生物技术, 25(2): 165-169. (Lv X F, Abliz Ablimit, Gong P, et al.2015. Genetic diversity of Gazella subgutturosa based on mitochondrial DNA D-loop and cytb sequence[J]. Biotechnology, 25(2): 165-169.) [9] 萨姆布鲁克J, 拉塞尔 D W. 2002. 分子克隆实验指南: 第三版[M]. 北京: 科学出版社, pp. 461-512. (Sambrook J, Russell D W.2002. Molecular Cloning: A Laboratory Manual: The Third Edition[M]. Science Press.. Beijing. pp. 461-512.) [10] 王世锋, 蔡佳麒, 沙晓娟, 等. 2016. 基于cytb基因分析帕米尔盘羊和新疆地方家绵羊的系统发育[J].生物技术, 26(1): 48-52. (Wang S F, Cai J Q, Sha X J, et al.2016. Phylogenetic study based on the Cytb gene of O.a.poloi and Xinjiang local sheep[J]. Biotechnology, 26(1): 48-52.) [11] 王兴亚, 周俐宏. 2016. 基于mtDNA Cytb基因序列的我国北方地区甜菜夜蛾遗传多样性与种群历史分析[J]. 生态学报, 36(8): 2337-2347. (Wang X Y, Zhou L H.2016, Genetic diversity and population history among geographic populations of spodoptera exigua in north China based on mtDNA Cytb gene sequences[J]. Acta Ecologica Sinica, 36(8): 2337-2347.) [12] 徐桂芳, 陈宽维. 2003. 中国家禽地方品种资源图谱[M]. 北京, 中国农业出版社, 7-8. (Xu G F, Cheng K W.2003. Photograph Abum of China Indigenous Poultry Breeds[M]. Beijing, China Agriculture Press, pp. 7-8.) [13] 徐龙鑫, 杨胜林, 李爱萍, 等. 2013. 中国矮马群体mtDNA Cytb基因遗传多样性及系统进化研究[J]. 中国农业科学, 46(3): 623-629. (Xu L X, Yang S L, Li A P, et al.2013. Genetic diversity and phylogenetic relationship among five pony populations of China[J]. Scientia Agricultura Sinica, 46(3): 623-629.) [14] 徐文娟, 朱文奇, 束婧婷,等. 2014.我国主要乌骨鸡品种遗传多样性和系统进化研究[J]. 中国畜牧杂志, 50(23): 10-14. (Xu W J, Zhu W Q, Shu J T, et al.2014. Study on genetic diversity and phylogenetic evolution in Chinese main black-bone chicken breeds[J]. Chinese Journal of Animal Science, 50(23): 10-14.) [15] 杨雪娇, 任战军, 张成东, 等. 2014. 基于Cytb基因多态性对藏獒群体遗传结构及系统进化的研究[J].畜牧兽医学报, 45(7): 1068-1074. (Yang X J, Ren Z J, Zhang C D, et al.2014. Genetic structure and phylogenetic evolution analysis based on Cytb gene polymorphism of Tibetan mastiff[J]. Acta Veterinaria et Zootechnica Sinica, 45(7): 1068-1074.) [16] 赵倩君, 关伟军, 乔海云, 等. 2010. 基于cytb基因探讨家绵羊和多角绵羊的系统发育[J]. 中国农业科学, 43(14): 3005-3011. (Zhao Q J, Guan W J, Qiao H Y, et al.2010. Phylogenetics of domestic sheep and multi-horned sheep based on cytb gene[J]. Scientia Agricultura Sinica, 43(14): 3005-3011.) [17] Bellott D W, Skaletsky H, Cho T J, et al.2017. Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators[J]. Nature Genetics, 49(3): 387. [18] Fumihito A, Miyake T, Sumi S, et al.1994. One subspecies of the red junglefowl (Gallus gallus gallus) sufficies as the matriarchic ancestor of all domestic breeds[J]. Proceedings of the National Academy of Sciences of the USA, 91: 12505-12509. [19] Hebert P D N, Ratnasingham S, Dewaard J R.2003. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species[J]. Proceedings of The Royal Society B Biological Sciences, 270: 96-99. [20] Kanginakudru S, Metta M, Jakati R D, et al.2008. Genetic evidence from Indian red jungle fowl corroborates multiple domestication of modern day chicken[J]. BMC Evolutionary Biology, 8: 174. [21] Kusza S, Zakar E, Budai C, et al.2015. Mitochondrial DNA variability in Gyimesi Racka and Turcana sheep breeds[J]. Acta Biochimica Polonica, 62(2): 273-280. [22] Labuschagne C, Kotzé A, Grobler J P, et al.2014. The complete sequence of the mitochondrial genome of the African Penguin (Spheniscus demersus)[J]. Gene, 534(1): 113-118. [23] Liu Y H, Zhang M H, Ma J Z.2013. Phylogeography of red deer (Cervus elaphus) in China based on mtDNA cytochrome B gene[J]. Research Journal of Biotechnology, 8(10): 34-41. [24] Rozas J, Sanchez-delbarrio J C, Messeguer X, et al.2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics, 19(18): 2496-2497. [25] Smith M A, Woodley N E, Janzen D H, et al.2006. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies[J]. Proceedings of the National Academy of Sciences of the USA, 103(10): 3657-3662. [26] Tamuia k, Dudley J, Nei M, et al.2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution, 24(8): 1596-1599. [27] Taillebois L, Castelin M, Ovenden J R, et al.2013. Contrasting genetic structure among populations of two amphidromous fish specie (Sicydiinae) in the Central West Pacific[J]. PLOS ONE, 8(10): e75465. [28] Jia X X, Tang X J, Lu J X, et al.2016. The investigation of genetic diversity and evolution of Daweishan Minichicken based on the complete mitochondrial (mt)DNA D-loop region sequence[J]. Mitochondrial DNA, 27(4): 3001-3004. [29] Yang C, Wang Q X, Huang Y, et al.2013. Phylogenetic relationships among some groups of gulls based on complete sequences of the mitochondrial Cytb gene[J]. Acta Zootaxonomica Sinica, 38(2): 225-238. [30] Zardoya R, Meyer A.1996. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationship among vertebrates[J]. Molecular Biology and Evolution, 13: 933-942. |
[1] |
WANG Peng, LI Fang-Di, GUO Tian-Shun, DOU Jun-Huan, XIE Wei-Qing, LUO Zhao-Xia, QI Xiao-Dong, YANG Chen, ZHAO Zhong-Liang, SONG Yi, LV Tai. Genetic Relationship Analysis and Fingerprint Construction of Potato(Solanum tuberosum) Germplasm Resources[J]. 农业生物技术学报, 2020, 28(5): 794-810. |
|
|
|
|