|
|
Current Status and Prospects of Safety Standard System for Agricultural Genetically Modified Organisms in China |
LIANG Jin-Gang1, HE Xiao-Yun2, WU Yu-Hua3, LI Xia-Ying1, ZHANG Xiu-Jie1,* |
1 Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China; 2 College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;; 3 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China |
|
|
Abstract With the continuous deepening of the safety management of agricultural genetically modified organisms (GMOs) in China, the role of technical standards has become more prominent, and it has become an important technical support for legal management. After 16 years of hard work, China has basically established a safety standards system for agricultural GMOs. By December 2018, the Ministry of Agriculture/Ministry of Agriculture and Rural Affairs had released 201 safety standards for agricultural GMOs, and 193 were currently in force. This paper summarizes the status quo of China's agricultural GMOs safety standards system, analyzes the characteristics of agricultural GMOs safety standards system and raises the existing problems, and discusses the development direction of agricultural GMOs safety standards system construction in the future. This paper provides reference for the further improvement of China's agricultural GMOs safety standards, which will provide better technical support for the safety management of agricultural GMOs.
|
Received: 19 July 2019
|
|
Corresponding Authors:
*zhxj7410@sina.com
|
|
|
|
[1] 杜智欣, 焦悦, 张亮亮, 等. 2017. 转基因成分定量检测技术研究进展[J]. 食品工业科技, 38(10): 379-384. (Du Z X, Jiao Y, Zhang L L, et al.2017. Development of quantitative detection techniques of genetically modified organisms[J]. Science and Technology of Food Industry, 38(10): 379-384.) [2] 付伟, 魏霜, 王晨光, 等. 2016. 基因编辑作物的发展及检测监管现状[J]. 植物检疫, 30(3): 1-8. (Fu W, Wei S, Wang C G, et al.2016. Development, regulatory and detection of genetically modified plant based on genome editing techniques[J]. Plant Quarantine, 30(3): 1-8.) [3] 焦悦, 吴刚, 黄耀辉, 等. 2018. 基因组编辑技术及其安全评价管理[J]. 中国农业科技导报, 20(4), 12-19. (Jiao Y, Wu G, Huang Y H, et al.2018. Genome editing technology and its safety assessment management[J]. Journal of Agricultural Science and Technology, 20(4), 12-19.) [4] 李奇妙, 马雄飞, 穆平. 2015. 转基因作物标准化的必要性及现有标准[J]. 中国种业, 10: 6-10. (Li Q M, Ma X F, Mu P.2015. The need for standardization of GM crops and existing standards[J]. China Seed Industry, 10: 6-10.) [5] 李夏莹, 高鸿飞, 刘鹏程, 等. 2018. 转基因作物快速检测技术的研究进展[J]. 江苏农业科学, 46(3): 5-9. (Li X Y, Gao H F, Liu P C, et al.2018. Advances in rapid detection of transgenic crops[J]. Jiangsu Agricultural Sciences, 46(3): 5-9.) [6] 李夏莹, 宋贵文, 刘鹏程, 等. 2017. 国内外转基因检测能力验证概述[J]. 中国农业科技导报, 19(9): 51-56. (Li X Y, Song G W, Liu P C, et al.2017. Overview of the proficiency testing for GMO detection[J]. Journal of Agricultural Science and Technology, 19(9): 51-56.) [7] 李葱葱, 高越, 沈晓玲, 等. 2019. 基于焦磷酸测序技术的基因编辑位点检测方法的建立[J]. 中国农业大学学报, 24(9), 10-16. (Li C C, Gao Y, Shen X L, et al.2019. Pyrosequencing-based detection method for gene editing site[J]. Journal of China Agricultural University, 24(9), 10-16.) [8] 梁晋刚, 张正光. 2017. 转基因作物种植对土壤生态系统影响的研究进展[J]. 作物杂志, 4: 1-6. (Liang J G, Zhang Z G.2017. Advance on effects of genetically modified crops on soil ecosystems[J]. Crops, 4: 1-6.) [9] 梁晋刚, 张秀杰. 2017. 转基因作物对土壤微生物多样性影响的研究方法[J]. 生物技术通报, 33(10): 111-116. (Liang J G, Zhang X J.2017. Strategies for evaluating the effects of transgenic crops on soil microbial diversity[J]. Biotechnology Bulletin, 33(10): 111-116.) [10] 刘晓, 朱鹏宇, 王垚, 等. 2018. 数字PCR在功能核酸精准检测中的研究进展[J]. 生物技术通报, 34(9): 149-162. (Liu X, Zhu P Y, Wang Y, et al.2018. Development progress of digital PCR in the precise detection of functional nucleic acid[J]. Biotechnology Bulletin, 34(9): 149-162.) [11] 宋新元, 张欣芳, 于壮, 等. 2011. 转基因植物环境安全评价策略[J]. 生物安全学报, 20(1): 37-42. (Song X Y, Zhang X F, Yu Z, et al.2011. Strategy of environmental bio-safety assessment for transgenic plants[J]. Journal of Biosafety, 20(1): 37-42.) [12] 沈平, 章秋艳, 杨立桃, 等. 2017. 基因组编辑技术及其安全管理[J]. 中国农业科学, 50(8), 1361-1369. (Shen P, Zhang Q Y, Yang L T, et al.2017. The safety management of genome editing technology[J]. Scientia Agricultura Sinica, 50(8), 1361-1369.) [13] 王颢潜, 陈锐, 李夏莹, 等. 2018a. 转基因产品成分检测技术研究进展[J]. 生物技术通报, 34(3): 31-38. (Wang H Q, Chen R, Li X Y, et al.2018a. Research progress on the testing technologies for composition in genetically modified products[J]. Biotechnology Bulletin, 34(3): 31-38.) [14] 王颢潜, 李夏莹, 兰青阔, 等. 2018b. 农业转基因成分检测能力验证工作的关键点分析[J]. 天津农业科学, 24(9): 85-89. (Wang H X, Li X Y, Lan Q K, et al.2018b. Analysis of key points in the proficiency testing of agricultural genetically modified organism[J]. Tianjin Agricultural Sciences, 24(9): 85-89.) [15] 徐琳杰, 刘培磊, 李文龙, 等. 2018. 国际转基因标识制度变动趋势分析及对我国的启示[J]. 中国生物工程杂志, 38(9): 94-98. (Xu L J, Liu P L, Li W L, et al.2018. Analysis of the recent trends of international labeling policies for genetically modified products and the enlightenment to China's labeling management[J]. China Biotechnology, 38(9): 94-98.) [16] 杨雄年. 2018. 转基因政策 [M]. 北京: 中国农业科学技术出版社, 5; 30. (Yang X N. 2018. Policy of Genetically Modified Organisms Management [M]. Beijing: China Agricultural Science and Technology Press, 5; 30.) [17] Bonfini L, Van den Bulcke M H, Mazzara M, et al.2012. GMOMETHODS: The European Union database of reference methods for GMO analysis[J]. Journal of AOAC International. 95(6): 1713-1719. [18] Codex Alimentarius.2008. Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants (CAC/GL 45-2003) [R]. Codex Alimentarius Commission. Rome, Italy: Joint FAO/WHO Food Standards Programme. [19] Peng C, Xu X L, Wang X F, et al.2018, High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction[J]. The Plant Journal, 95(3): 557-567. |
|
|
|