|
|
Expression and Protein Interactions Analysis of ZmPP2C3 Gene in Maize (Zea mays) |
WANG Guo-Rui*, YUAN Zhen*, ZHANG Peng-Yu, QIU Xiao, LIU Zhi-Xue, WANG Tong-Chao, WEI Li** |
College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China |
|
|
Abstract Protein phosphates 2C (PP2C) genes play an important role in regulating plant growth and abiotic stress resistance. In this study, ZmPP2C3 (GenBank No. NM_001155565.2), screened from the previous drought-rewatering transcriptome analysis and encoding PP2C protein, was cloned in maize (Zea mays). Sequence analysis showed that the ORF of ZmPP2C3 gene was 1 227 bp, encoded 408 amino acids, and the molecular weight was 43.28 kD, isoelectric point was 5.92; Sequence alignment revealed that ZmPP2C3 shared high sequence homology with AIB05995.1 (99.75%) and AIG52088.1 (99.75%) in maize; Subcellular localization showed that the protein encoded by the ZmPP2C3 gene was detected in the nucleus. The qRT- PCR analysis showed that ZmPP2C3 gene had the highest expression in the root of corn seedlings, and the expression of ZmPP2C3 was positively regulated by drought, salt, high temperature and abscisic acid (ABA) treatment. Yeast two-hybrid analysis showed that ZmPP2C3 protein was interacted with GRMZM2G180625, GRMZM2G038126, GRMZM2G155242, GRMZM2G110408 and GRMZM2G069651. This study provides a reference for further biological function analysis of ZmPP2C3 gene.
|
Received: 09 September 2019
|
|
Corresponding Authors:
** weili-wtc@126.com
|
About author:: * The authors who contribute equally |
|
|
|
1 陈金焕, 夏新莉, 尹伟伦. 2010. 植物2C类蛋白磷酸酶及其在逆境信号转导中的作用[J]. 北京林业大学学报, 32(05): 168-171. (Chen J H, Xia X L, Yin W L.2010. PP2C-type protein phosphatases and their functions in stress signaling[J]. Journal of Beijing Forestry University, 32(05): 168-171.) 2 邓克勤, 郭新红, 汪启明, 等. 2009. 拟南芥磷酸酶基因亚细胞定位与组织表达[J]. 西北植物学报, 29(02): 234-239. (Deng K Q, Guo X H, Wang Q M, et al.2009. Subcellular localization and tissue expression pattern of Arabidopsis phosphatase Gene[J]. Acta Botanica Boreali-Occidentalia Sinica, 29(02): 234-239.) 3 郭鹏, 张士刚, 邢鑫, 等. 2015. 欧美杨PdPP2C基因的克隆与功能分析[J]. 北京林业大学学报, 37(02): 100-106. (Guo P, Zhang S G, Shao X, et al.2015. Cloning and function analysis of PdPP2C from Populus deltoides[J]. Journal of Beijing Forestry University, 37(02): 100-106.) 4 王婕. 2009. 拟南芥PP2CA2基因T-DNA插入突变体功能分析[D]. 硕士学位论文, 湖南大学, 导师: 郭新红. pp. 1-12. (Wang J.2009. Analysis on function of PP2CA2 gene T-DNA insertion mutant in Arabidopsis[D]. Thesis for M.S. Hunan University, Supervisor: Guo X H, pp. 1-12.) 5 吴炳江, 阎鹏磊, 刘东篱, 等. 2010. 拟南芥盐胁迫响应启动子的生物信息学分析[J]. 山东农业大学学报(自然科学版), 41(02): 164-168; 174.(Wu B J, Yan P L, Liu D L, et al. 2010. Bioinformatical analysis of salinity-responsive promoters in Arabidopsis thaliana[J]. Journal of Shandong Agricultural University(Natural Science Edition), 41(02): 164-168; 174.) 6 徐春霞, 孙成韬, 谭静, 等. 2006. 玉米抗旱育种的研究进展[J]. 西南农业学报, 19(增刊): 18-19. (Xu C X, Sun C T, Tan J, et al.2006. Research progress in drought resistance breeding of maize[J]. Southwest China Journal of Agricultural Sciences, 19(Supplement): 18-19.) 7 薛昌颖, 张弘, 刘荣花. 2016. 黄淮海地区夏玉米生长季的干旱风险[J]. 应用生态学报, 27(05): 1521-1529. (Xue C Y, Zhang H, Liu R H.2016. Drought risk of summer maize in Huanghuaihai area, China[J]. Chinese Journal of Applied Ecology, 27(05): 1521-1529.) 8 颜彦, 胡伟. 2014. 短柄草2C型蛋白磷酸酶基因BdPP2C2的克隆及表达分析[J]. 广东农业科学, 41(12): 156-160. (Yan Y, Hu W.2014. Cloning and expression analysis of BdPP2C2 gene from Brachypodium distachyon[J]. Guangdong Agricultural Sciences, 41(12): 156-160.) 9 于志晶, 尚丽霞, 蔡勤安, 等. 2016. 水稻热激蛋白基因HSP90转化大豆的研究[J]. 大豆科学, 35(02): 222-227. (Yu Z J, Shang L X, Cai Q A, et al.2016. Transformation of heat shock protein gene HSP90 of rice into soybean[J]. Soybean Science, 35(02): 222-227.) 10 Anuj K, Seema A, A H J, et al.2002. Subcellular localization of the yeast proteome[J] . Genes & Development, 16(6): 709-719. 11 Arshad M, Mattsson J.2014. A putative poplar PP2C-encoding gene negatively regulates drought and abscisic acid responses in transgenic Arabidopsis thaliana[J]. Trees-Structure and Function, 28(2): 531-543. 12 Bruckner A, Polge C, Lentze N, et al.2009. Yeast two-hybrid, a powerful tool for systems biology[J]. International Journal of Molecular Sciences, 10(6): 2763-2788. 13 Camero C M, Vassallo A, De Leo M, et al.2018. Limonoids from aphanamixis polystachya leaves and their interaction with Hsp90[J]. Planta Medica, 84(12-13): 964-970. 14 Fujii H, Chinnusamy V, Rodrigues A, et al.2009. In vitro reconstitution of an abscisic acid signalling pathway[J]. Nature, 462(7273): 660-664. 15 Guo P, Shi W, Li L, et al.2018. MsPP2C, a protein phosphatase 2C gene of alfalfa, confers enhanced salt tolerance in Arabidopsis[J]. International Journal of Agriculture and Biology, 20(1): 62-70. 16 Kerk D, Bulgrien J, Smith D W, et al.2002. The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis[J]. Plant Physiology, 129(2): 908-925. 17 Li X, Wei W, Li F, et al.2019. The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for abiotic stress response in wheat[J]. International Journal of Molecular Sciences, 20(5). 18 Liu X, Zhu Y, Zhai H, et al.2012. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner[J]. Biochemical and Biophysical Research Communications, 422(4): 710-715. 19 Melcher K, Ng L M, Zhou X E, et al.2009. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors[J]. Nature, 462(7273): 602-608. 20 Moroni E, Agard D A, Colombo G.2018. The structural asymmetry of mitochondrial Hsp90 (Trap1) determines fine tuning of functional dynamics[J]. Journal of Chemical Theory and Computation, 14(2): 1033-1044. 21 Nishimura N, Yoshida T, Kitahata N, et al.2007. ABA-Hypersensitive germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed[J]. Plant Journal, 50(6): 935-949. 22 RayChaudhuri A, Hait N C, Dasgupta S, et al.1997. L-myo-lnositol 1-phosphate synthase from plant sources (characteristics of the chloroplastic and cytosolic enzymes)[J]. Plant Physiology, 115(2): 727-736. 23 Saez A, Rodrigues A, Santiago J, et al.2008. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis[J]. Plant Cell, 20(11): 2972-2988. 24 Singh A, Jha S K, Bagri J, et al.2015. ABA inducible rice protein phosphatase 2c confers ABA insensitivity and abiotic stress tolerance in Arabidopsis[J]. PLOS ONE, 10(4): 1-24. 25 Vlad F, Rubio S, Rodrigues A, et al.2009. Protein phosphatases 2c regulate the activation of the snf1-related kinase OST1 by abscisic acid in Arabidopsis[J]. Plant Cell, 21(10): 3170-3185. 26 Wang X, Guo C, Peng J, et al.2019. ABRE-binding factors play a role in the feedback regulation of ABA signaling by mediating rapid ABA induction of ABA co-receptor genes[J]. The New Phytologist, 221(1): 341-355. 27 Xue T T, Wang D, Zhang S Z, et al.2008. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis[J]. BMC Genomics, 9(1): 550. 28 Yan J Q, Wang J, Li Q T, et al.2003. AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis[J]. Plant Physiology, 132(2): 861-869. 29 Yuan H, Cai L, Wang P, et al.2019. Molecular cloning and functional characterization of a glyceraldehyde-3-phosphate dehydrogenase gene from Spartina alterniflora reveals its involvement in salt stress response[J]. Acta Physiologiae Plantarum, 41(7): 1-13. 30 Yue G, Hu X, He Y, et al.2010. Identification and characterization of two members of the FtsH gene family in maize (Zea mays L.)[J]. Molecular Biology Reports, 37(2): 855-863. |
[1] |
MENG Yu-Yu, LI Hu-Ying, XU Yuan, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, ZHAO Wei-Quan, KANG Zhen-Sheng, LIU Da-Qun. Anti-stress Related Expression Analysis of TaSKP2A Gene in Wheat (Triticum aestivum) and Its Interaction Protein Screening[J]. 农业生物技术学报, 2020, 28(4): 571-581. |
|
|
|
|