|
|
Research Advances in the Function of Anthocyanin in Plant Stress Response |
WANG Hong-Xue1, LIU Tian-Yu1, ZHUANG Wei-Bing2,*, WANG Zhong2, ZHU Lin3, QU Shen-Chun1,*, ZHAI Heng-Hua2 |
1 Nanjing Agricultural University, College of Horticulture, Nanjing 210095, China; 2 Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Nanjing 210014, China; 3 Linyi Lanshan District Comprehensive Administrative Law Enforcement Bureau, Linyi 276000, China |
|
|
Abstract Anthocyanins, belonging to flavonoid compounds, are a kind of water-soluble natural pigments. Under natural conditions, anthocyanins always exist in the form of glycosides combined with glycosylation. The type, content and distribution of anthocyanins in plants contributed to the color of organs, such as plant flowers, stems, leaves and fruits. In addition, anthocyanins also play important roles in enhancing the tolerance and resistance of abiotic stresses such as drought, low temperature, salt stress, low nitrogen, and biotic stresses such as Erwinia amylovora, Pectobacterium carotovorum, and Verticillium dahliae. In this paper, we mainly reviewed the biosynthesis and metabolism of plant anthocyanins, the molecular mechanism of plant anthocyanins in the response to the biotic and abiotic stress, and proposed the direction for the future studies. This paper would be helpful for understanding and applying the molecular mechanism of plant anthocyanins in the response to the biotic and abiotic stress, and provides references for the cultivation of anthocyanin-mediated high tolerance and resistance plants.
|
Received: 30 May 2019
|
|
Corresponding Authors:
*weibingzhuangnj@sina.com; qscnj@njau.edu.cn
|
|
|
|
[1] 戴思兰, 洪艳. 2016. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种[J]. 中国农业科学, 49(03): 529-542. (Dai S L,Hong Y.2016. Molecular breeding for flower colors modification on ornamental plants based on the mechanism of anthocyanins biosynthesis and coloration[J]. Scientia Agricultura Sinica, 49(03): 529-542.) [2] 李芳. 2016. 番茄miR828靶基因验证及SlyMYB7-Like功能探究[D]. 硕士学位论文, 山西农业大学, 导师: 贾小云, pp. 34-36. (Li F.2016. Validation of miR828 target gene and function analysis of SilMYB-Like in tomato[D]. Thesis for M.S., Shanxi Agricultural University, Supervisor: Jia X Y, pp. 34-36.) [3] 张丽, 牛雪飞, 郭栋, 等. 2019. 盐胁迫下草麻黄电阻抗图谱参数的变化及离子平衡机制[J]. 核农学报, 33(6): 1208-1216. (Zhang L, Niu X, Guo D, et al.2019. Changes of electrical impedance parameters and ion balance mechanism to salt stress of Ephedra sinica Stapf[J]. Journal of Nuclear Agricultural Sciences, 33(6): 1208-12169.) [4] 祝志欣, 鲁迎青.2016. 花青素代谢途径与植物颜色变异[J]. 植物学报, 51(01): 107-119. (Zhu Z X, Lu Y Q.2016. Plant color mutants and the anthocyanin pathway[J]. Bulletin of Botany, 51(01): 107-119.) [5] 庄维兵, 刘天宇, 束晓春, 等. 2018. 植物体内花青素苷生物合成及呈色的分子调控机制[J].植物生理学报, 54(11): 1630-1644. (Zhuang W B, Liu T Y, Shu X C, et al.2018. The molecular regulation mechanism of anthocyanin biosynthesis and coloration in plants[J]. Plant Physiology Journal, 54(11): 1630-1644.) [6] Ahmed N U, Park J I, Jung H J, et al.2014. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa[J]. Gene, 550(1): 46-55. [7] Ahmed N U, Park J I, Jung H J, et al.2015. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa[J], Functional & Integrative Genomics, 15(4): 383-394. [8] An J P, Li R, Qu F J, et al.2018. R2R3‐MYB transcription factor Md MYB 23 is involved in the cold tolerance and proanthocyanidin accumulation in apple[J]. The Plant Journal, 96(3): 562-577. [9] Bi H, Guo M, Wang J, et al.2018. Transcriptome analysis reveals anthocyanin acts as a protectant in Begonia semperflorens under low temperature[J]. Acta physiologiae plantarum, 40(1): 10. [10] Chen J, Mao L, Mi H, et al.2016. Involvement of abscisic acid in postharvest water-deficit stress associated with the accumulation of anthocyanins in strawberry fruit[J]. Postharvest Biology and Technology, 111: 99-105. [11] Chen L, Hu B, Qin Y, et al.2019. Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors[J]. Plant Physiology and Biochemistry, 136: 178-187. [12] Cheng Y J, Kim M D, Deng X P, et al.2013. Enhanced salt stress tolerance in transgenic potato plants expressing IbMYB1, a sweet potato transcription factor[J]. Journal of Microbiology and Biotechnology, 23(12): 1737-1746. [13] Chunthaburee S, Sakuanrungsirikul S, Wongwarat T.et al.2016. Changes in anthocyanin content and expression of anthocyanin synthesis genes in seedlings of black glutinous rice in response to salt stress[J]. Asian Journal of Plant Sciences, 15(3-4): 56-65. [14] Chutipaijit S, Chaum S, Sompornpailin K.2011. High contents of proline and anthocyanin increase protective response to salinity in Oryza sativa L. spp. indica[J]. Australian Journal of Crop Science, 5(10): 1191-1198. [15] Cui Z H, Bi W L, Hao X Y, et al.2017. Drought stress enhances up-regulation of anthocyanin biosynthesis in grapevine leaf roll-associated virus 3-infected in vitro grapevine (Vitis vinifera) leaves[J]. Plant disease, 101(9): 1606-1615. [16] Davies K M, Albert N W, Zhou Y, et al.2018. Functions of flavonoid and betalain pigments in abiotic stress tolerance in plants[J]. Annual Plant Reviews online, DOI: 10.1002/9781119312994.apr0604. [17] Flachowsky H, Szankowski I, Fischer T C, et al.2010. Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight[J]. Planta, 231(3): 623-635. [18] Han Y, Vimolmangkang S, Soria-Guerra R E, et al.2010. Ectopic expression of apple F3′H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress[J]. Plant Physiology, 153(2): 806-820. [19] He S, Tong X, Han M, et al.2018. Genome-wide identification and characterization of WD40 protein genes in the silkworm, bombyx mori[J]. International Journal of Molecular Sciences, 19(2): 527. [20] Jahantigh O, Najafi F, Badi H N, et al.2016. Changes in antioxidant enzymes activities and proline, total phenol and anthocyanine contents in Hyssopus officinalis L. plants under salt stress[J]. Acta Biologica Hungarica,67(2): 195-204. [21] Kim J, Lee W J, Vu T T, et al.2017. High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L[J]. Plant cell reports, 36(8): 1215-1224. [22] Lalithya K A, Manjunatha G, Raju B, et al.2017. Plant growth regulators and signal molecules enhance resistance against bacterial blight disease of pomegranate[J]. Journal of Phytopathology, 165(11-12): 727-736. [23] Ledent V,Vervoort M.2001. The basic helix-loop-helix protein family: Comparative genomics and phylogenetic analysis[J]. Genome Research, 11(5): 754-770. [24] Lei K J, Zhang L, Du X Y, et al.2018. A chalcone synthase controls the verticillium disease resistance response in both Arabidopsis thaliana and cotton[J]. European Journal of Plant Pathology, 152(3): 769-781. [25] Li J J, Ma J, Guo H, et al.2018. Growth and physiological responses of two phenotypically distinct accessions of centipedegrass (Eremochloa ophiuroides (Munro) Hack.) to salt stress[J]. Plant Physiology and Biochemistry, 126: 1-10. [26] Li P, Li Y J, Zhang F J, et al.2017. The Arabidopsis UDP‐glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation[J]. The Plant Journal, 89(1): 85-103. [27] Li X, Ouyang X, Zhang Z, et al.2019. Over-expression of the red plant gene R1 enhances anthocyanin production and resistance to bollworm and spider mite in cotton[J]. Molecular Genetics and Genomics, 294(2): 469-478. [28] Lian X, Wang S, Zhang J, et al.2006. Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray[J]. Plant Molecular Biology, 60(5): 617-631. [29] Liang J,He J.2018. Protective role of anthocyanins in plants under low nitrogen stress[J]. Biochemical and Biophysical Research Communications, 498(4): 946-953. [30] Liu Y, Tikunov Y, Schouten R E, et al.2018. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: a review[J]. Frontiers in Chemistry, 6: 52. [31] Lo Piero A R, Puglisi I, Rapisarda P, et al.2005. Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage[J]. Journal of Agricultural and Food Chemistry, 53(23): 9083-9088. [32] Long L, Zhao J R, Xu F C, et al.2018. Silencing of GbANS reduces cotton resistance to Verticillium dahliae through decreased ROS scavenging during the pathogen invasion process[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 135(2): 213-221. [33] Lotkowska M E, Tohge T, Fernie A R, et al.2015. The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress[J]. Plant Physiology, 169(3): 1862-1880. [34] Luo J, Wang X, Feng L, et al.2017. The mitogen-activated protein kinase kinase 9 (MKK9) modulates nitrogen acquisition and anthocyanin accumulation under nitrogen-limiting condition in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 487(3): 539-544. [35] Mahmood K, Xu Z, El-Kereamy A, et al.2016. The Arabidopsis transcription factor ANAC032 represses anthocyanin biosynthesis in response to high sucrose and oxidative and abiotic stresses[J]. Frontiers in Plant Science, 7: 1548. [36] Mason J R, Adams M A.1989. Anthocyanin bird repellents. United States Patent, US4888173A[P]. [37] Meng X, Yin B, Feng H L, et al.2014. Overexpression of R2R3-MYB gene leads to accumulation of anthocyanin and enhanced resistance to chilling and oxidative stress[J]. Biologia Plantarum, 58(1): 121-130. [38] Naing A H, Ai T N, Lim K B, et al.2018a. Overexpression of Rosea1 from snapdragon enhances anthocyanin accumulation and abiotic stress tolerance in transgenic tobacco[J]. Frontiers in Plant Science, 9: 1070. [39] Naing A H, Park D Y, Park K I, et al.2018b. Differential expression of anthocyanin structural genes and transcription factors determines coloration patterns in gerbera flowers[J]. 3 Biotech, 8(9): 393. [40] Naing A H, Park K I, Ai T N, et al.2017. Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance[J]. BMC Plant Biology, 17(1): 65. [41] Nakabayashi R, Yonekura‐Sakakibara K, Urano K, et al.2014. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids[J]. The Plant Journal, 77(3): 367-379. [42] Nemie-Feyissa D, Heidari B, Blaise M, et al.2015. Analysis of interactions between heterologously produced bHLH and MYB proteins that regulate anthocyanin biosynthesis: quantitative interaction kinetics by microscale thermophoresis[J]. Phytochemistry, 111: 21-26. [43] Nisha S N, Prabu G, Mandal A K A.2018. Biochemical and molecular studies on the resistance mechanisms in tea [Camellia sinensis (L.) O. Kuntze] against blister blight disease[J]. Physiology and Molecular Biology of Plants, 24(5): 867-880. [44] Oh J E, Kim Y H, Kim J H, et al.2011. Enhanced level of anthocyanin leads to increased salt tolerance in Arabidopsis PAP1-D plants upon sucrose treatment[J]. Journal of the Korean Society for Applied Biological Chemistry, 54(1): 79-88. [45] Outchkourov N S, Karlova R, Hölscher M, et al.2018. Transcription factor-mediated control of anthocyanin biosynthesis in vegetative tissues[J]. Plant Physiology, 176(2): 1862-1878. [46] Peng X, Liu H, Wang D, et al.2016. Genome-wide identification of the Jatropha curcas MYB family and functional analysis of the abiotic stress responsive gene JcMYB2[J]. BMC Genomics, 17(1): 251. [47] Ramos-Solano B, Algar E, Gutierrez-Mañero F J, et al.2015. Bacterial bioeffectors delay postharvest fungal growth and modify total phenolics, flavonoids and anthocyanins in blackberries[J]. LWT-Food Science and Technology, 61(2): 437-443. [48] Sewelam N, Kazan K, Schenk P M.2016. Global plant stress signaling: reactive oxygen species at the cross-road[J]. Frontiers in Plant Science, 7: 187. [49] Shen X, Guo X, Guo X, et al.2017. PacMYBA, a sweet cherry R2R3-MYB transcription factor, is a positive regulator of salt stress tolerance and pathogen resistance[J]. Plant Physiology and Biochemistry, 112: 302-311. [50] Shin D H, Choi M G, Kang C S, et al.2016. A wheat R2R3-MYB protein PURPLE PLANT1 (TaPL1) functions as a positive regulator of anthocyanin biosynthesis[J]. Biochemical and Biophysical Research Communications, 469(3): 686-691. [51] Sivankalyani V, Feygenberg O, Diskin S, et al.2016. Increased anthocyanin and flavonoids in mango fruit peel are associated with cold and pathogen resistance[J]. Postharvest Biology and Technology, 111: 132-139. [52] Su N, Wu Q, Cui J.2016. Increased sucrose in the hypocotyls of radish sprouts contributes to nitrogen deficiency-induced anthocyanin accumulation[J]. Frontiers in Plant Science, 7: 1976. [53] Sudheeran P K, Feygenberg O, Maurer D, et al.2018. Improved cold tolerance of mango fruit with enhanced anthocyanin and flavonoid contents[J]. Molecules, 23(7): 1832. [54] Sun M, Feng X X, Gao J J, et al.2017. VvMYBA6 in the promotion of anthocyanin biosynthesis and salt tolerance in transgenic Arabidopsis[J]. Plant Biotechnology Reports, 11(5): 299-314. [55] Sun X, Jia X, Huo L, et al.2018. MdATG18a overexpression improves tolerance to nitrogen deficiency and regulates anthocyanin accumulation through increased autophagy in transgenic apple[J]. Plant, Cell & Environment, 41(2): 469-480. [56] Szepesi Á, Csiszár J, Gallé Á, et al.2008. Effects of long-term salicylic acid pre-treatment on tomato (Lycopersicon esculentum Mill. L.) salt stress tolerance: changes in glutathione S-transferase activities and anthocyanin contents[J]. Acta Agronomica Hungarica, 56(2): 129-138. [57] Wang H, Fan W, Li H, et al.2013. Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses[J]. PLOS ONE, 8(11): e78484. [58] Wegener C B, Jansen G.2007. Soft-rot resistance of coloured potato cultivars (Solanum tuberosum L.): The role of anthocyanins[J]. Potato Research, 50(1): 31-44. [59] Xie X B, Li S, Zhang R F, et al.2012. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples[J]. Plant, Cell & Environment, 35(11): 1884-1897. [60] Xie Y, Tan H, Ma Z, et al.2016. DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in Arabidopsis thaliana[J]. Molecular Plant, 9(5): 711-721. [61] Xu H, Yang G, Zhang J, et al.2018. Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus[J]. Biochemical and Biophysical Research Communications, 500(2): 405-410. [62] Xu Z.2016. The role of anthocyanins and the GATA transcription factors GNC and CGA1 in the plant response to stress[D]. Thesis for M.S., University of Guelph, Supervisor: Rothstein S J, pp. 26-27. [63] Zandalinas S I, Mittler R, Balfagón D, et al.2018. Plant adaptations to the combination of drought and high temperatures[J]. Physiologia Plantarum, 162(1): 2-12. [64] Zhang B, Hu Z, Zhang Y, et al.2012. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica oleracea var. acephala f. tricolor)[J]. Plant Cell Reports, 31(2): 281-289. [65] Zhang T J, Chow W S, Liu X T, et al.2016. A magic red coat on the surface of young leaves: Anthocyanins distributed in trichome layer protect Castanopsis fissa leaves from photoinhibition[J]. Tree Physiology, 36(10): 1296-1306. [66] Zhang X H, Zheng X T, Sun B Y, et al.2018. Over-expression of the CHS gene enhances resistance of Arabidopsis leaves to high light[J]. Environmental and Experimental Botany, 154: 33-43. [67] Zhang Y, Liu Z, Liu J, et al.2017. GA-DELLA pathway is involved in regulation of nitrogen deficiency-induced anthocyanin accumulation[J]. Plant Cell Reports, 36(4): 557-569. |
[1] |
LI Yan-Fei, XIN Yu-Qiong, GAO Shi-Dong, ZHAO Pei-Yu, YAN Jing-Li, CHEN Qin-Qin, ZHANG Han-Feng, LIU Wu-Zhen, YANG Bo, LI Jing, JIANG Yuan-Qing. Cloning, Expression Analysis and Interacting Protein CBL Identification of CIPK2 and CIPK16 Genes in Oilseed Rape (Brassica napus)[J]. 农业生物技术学报, 2020, 28(1): 1-12. |
|
|
|
|