|
|
The Analysis on Genetic Evolution of Bian Chicken (Gallus gallus) Population Based on RAD-seq Technology |
LI Guo-Hui1, Wei Qing-Yu2, ZHANG Hui-Yong1, YIN Jian-Mei1, XUE Qian1, ZHU Yun-Fen1, SU Yi-Jun1, WANG Ke-Hua1, ZOU Jian-Min1, HAN Wei1,* |
1 National Chickens Genetic Resources, Jiangsu Institute of Poultry Science, Yangzhou 225125, China; 2 Sciences of Shanxi Agricultural Academy Institute of Animal Husbandry & Veterinary, Taiyuan 030032, China |
|
|
Abstract Bian chicken (Gallus gallus) is a valuable genetic resource as a Chinese native chicken. It is of great significance to explore the genetic diversity and molecular genetic evolution of the population at the molecular level. In this study, RAD-seq simplified genome sequencing technology was employed to identify SNP markers in Bian chickens and compare the genetic differences between the Bian chicken population and the other breeds population by calculating the genetic statistics. Functional annotation was conducted for the selected genes during evolution. The results showed that 319 727 SNP markers were identified in Bian chickens. The average observed heterozygosity (0.193) and nucleotide diversity (0.231) were in the medium levels, but inbreeding coefficient(0.167) was relatively high.The linkage disequilibrium analysis showed that there was no strong linkage disequilibrium between the alleles of Bian chickens population. The clustering results of the structure model showed that Bian chicken and Dagu chicken, Anyi gray chicken, Langshan chicken had a close relationship and belonged to the same type. 200 selected genes were identified through the Fst and θπ testing. Gene Ontology (GO) and KEGG analysis showed that these selected genes were mainly enriched in metabolism, neuroactive ligand-receptor interaction, mitogen-activated protein kinase (MAPK), vascular smooth muscle contraction signal pathways. The function analysis of the genes including nitric oxide synthase (NOS2), heterochromatin protein 1 binding protein 3 (HP1BP3), aprataxin (APTX), prostaglandin endoperoxide synthase 2 (PTGS2) and phospholipase A2 group 4 type alpha (PLA2G4A) was helpful to understand the molecular mechanism of special traits such as cold resistance, hypoxia, fertility, nervous system development and stress resistance in Bian chicken. The results of the study provide molecular basis for the genetic evolution and evaluation and conservation of local chicken breeds.
|
Received: 06 July 2019
|
|
Corresponding Authors:
* hanwei830@163.com
|
|
|
|
[1] 曹顶国, 周艳, 雷秋霞, 等. 2012. 鸡VLDLR基因多态性与蛋黄性状的关联分析[J].畜牧兽医学报, 43(6): 849-856. (Cao D G, Zhou Y, Lei Q X, et al.2012. Association of polymorphisms of VLDLR gene with yolk traits in chicken[J]. Acta Veterinariaet Zootechnica Sinica, 43(6): 849-856.) [2] 邓继贤, 杨秀荣, 蒋和生, 等. 2016. DNA 条形码在我国家禽种质资源保护中的应用研究[J]. 甘肃畜牧兽医, 46(18): 26-28. (Deng J X, Yang X R, Jiang H S, et al.2016. DNA barcodes application research in poultry germplasm resources protection in China[J]. Gansu Animal and Veterinary Sciences, 46 (18): 26-28). [3] 李涛, 樊航, 姬新颖, 等. 2014. TNFAIP8家族蛋白的研究进展[J].河南大学学报(医学版), 33(4):295-330. (Li T, Fan H, Ji X Y, et al.2014. The recent sudies on the TNFAIP8 family.[J]. Journal of Henan University. 33(4): 295-330.) [4] 李向阳, 刘永年, 袁明, 等. 2012. 高原低氧对药物代谢酶 CYP2C9和2C19活性及蛋白表达的影响[J].药学学报, 47(2): 188-193. (Li X Y, Liu Y N,Yuan M, et al.2012. Effect of high altitude hypoxia on the activity and protein expressionof CYP2C9 and CYP2C19[J]. Acta Pharmaceutica Sinica, 47(2): 188-193.) [5] 路国彬, 王夏晖, 吕文魁, 等. 2014. 中国畜禽遗传资源保护问题分析[J].家畜生态学报, 35(4): 1-6. (Lu G B, Wang X Hi, Lu W K, et al.2014. Analysis of conservation status of Chinese livestock and poultry genetic resources[J]. Acta Ecologiae Animalis Domastici, 35(4): 1-6.) [6] 潘章源, 贺小云, 刘秋月, 等. 2016. 全基因组测序(WGS)在畜禽群体进化和功能基因挖掘中的应用[J]. 农业生物技术学报, 24(12): 1945-1954. (Pan Z Y, He X Y,Liu Q Y, et al.2016. Application of whole genome sequencing (WGS) in population evolution and gene discovery of domestic animals[J]. Journal of Agricultural Biotechnology, 24(12): 1945-1954.) [7] 王洋坤, 胡艳, 张天真. 2014. RAD-seq 技术在基因组研究中的现状及展望[J].遗传, 36(1): 41-49. (Wang Y K, Hu Y, Zhang T Z.2014. Current status and perspective of RAD-seq in genomic research[J]. Hereditas (Beijing), 36(1): 41-49.) [8] 武艳平, 霍俊宏, 谢金防, 等. 2009. 利用微卫星和线粒体DNA标记研究山羊群体间的遗传关系[J]. 中国农学通报, 25(18): 7-12. (Wu Y P, Huo J H, Xie J F, et al.2009. Genetic relationships of goat breeds using micro satellite and mitochondrial DNA marker[J]. Chinese Agricultural Science Bulletin, 25(18): 7-12.) [9] 谢蜜蜜. 2016. 基于 RAD-seq技术的南方鲇高密度遗传连锁图谱构建[D]. 硕士学位论文. 西南大学, 导师: 彭作刚, pp. 1-20. (Xie M M.2016. High-density genetic map construction in southern catfish (Silurus meridionalis) based on RAD sequencing[D]. Thesis for M.S., Southwest University, Supervisor: Peng Z G, pp. 1-20.) [10] 于丹丹. 2016. BNC2基因多态性及其与鸡的银耳性状、产蛋性状的关系研究[D]. 硕士学位论文. 武汉: 华南农业大学, 导师: 刘清神, pp. 1-15. (Yu D D.2016. Study on the relationship between BNC2 gene polymorphisms and white earlobe traits, egg production traits in chicken [D].Thesis for M.S., South China Agricultural University, Supervisor: Liu Q S, pp. 1-15.) [11] 余德勇, 左瑞华, 吴进东. 2009. 地方家禽遗传资源保护基础方案探讨.畜牧与饲料科学[J]. 30(2):132-133. (Yu D Y,Zuo R H,Wu J D.2009. Discussion on the foundation scheme for protecting the genetic resources of local poultry[J]. Animal Husbandry and Feed Science, 30(2): 132-133.) [12] 翟正晓, 赵文静, 刘书云, 等. 2016. RAD测序法用于鸡双向选择家系群体遗传差异分析[J]. 上海交通大学学报, 32(2): 89-94. (Huo Z X, Zhao W J, Liu S Y, et al.2016. Analyses of population genetic difference in Chicken divergently selected lines using RAD-seq[J]. Journal of Shanghai Jiaotong University, 32(2): 89-94.) [13] 张跟喜, 丁馥香, 王金玉, 等. 2010. 利用微卫星标记分析边鸡遗传多样性及保种效果[J]. 农业生物技术学报, 18(5): 944-950. (Zhang G, Ding F X, Wang J Y, et al.2010. Analysis on genetic diversity and conserved effect of Bian Chicken using microsatellite markers[J]. Journal of Agricultural Biotechnology, 18(5): 944-950.) [14] 张学余, 韩威, 苏一军, 等. 2007 不同保种方法对狼山鸡保种群近交系数的影响[J]. 河南农业科学, 36(7): 105-108. (Zhang X Y, Han W, Su Y J, et al.2007 Influence of different conservation methods on inbreeding coefficients of Langshan Chickens[J]. Journal of Henan Agricultural Sciences, 36(7): 105-108.) [15] Barchi L, Lanteri S, Portis E, et al.2011. Identification of SNP and SSR markers in eggplant using RAD tag sequencing[J]. BMC Genomics, 12(1): 304. [16] Ding N S, Ren D, Ren G Y, et al.2006. Genetic variation of porcin e prostaglandin endoperoxide synthase 2 (PTGS2) gene and its association with reproductive traits in an Erhualian ×Duroc F2 population[J]. Acta Genetica Sinica, 33(3): 213-219. [17] Fradette C, Bleau AM, Pichette V, et al.2002. Hypoxia-induced down-regulation of CYP1A1/1A2 and up-regulation of CYP3A6 involves serum mediators[J]. British Journal of Pharmacology, 137: 881-891. [18] Makito Hirano, Ryusuke Matsumura, Yusaku Nakamura, et al.2017. Unexpectedly mild phenotype in an ataxic family with a two-base deletion in the APTX gene[J]. Journal of the Neurological Sciences, 378: 75-79. [19] Sarah B. Pierce, Tom Walsh, Karen M. Chisholm, et al.2010. Mutations in the DBP-Deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of perrault syndrome[J]. The American Journal of Human Genetics, 87(2): 282-288. [20] Semenza G L.2002. HIF1 and tumor progression: Pathophysiology and therapeutics[J].Trends in Molecular Medicine, 8(4): 62-27. [21] Sheroy M, Claus H, Hyung-Goo K, et al.2014. Epigenetic remodelling and dysregulation of DLGAP4 is linked with earlyonset cerebellar ataxia[J]. Human Molecular Genetics , 23(23) : 6163-6176. [22] Tanimoto K, Yoshiga K, Eguchi H, et al.2003. Hypoxia-inducible factor-1α polymorphisms associated with enhanced transactivation capacity, implying clinical significance[J]. Carcinogenesis, 24(11): 1779-1783. [23] Tavares H, Yacubian J, Talib L L, et al.2003. Increased phospholipase A2 activity in schizophrenia with absent response to niacin[J]. Schizophrenia Research, 61(1): 1-6. [24] Xu D, Yang Q, Cui M, et al.2017. The novel transcriptional factor HP1BP3 negatively regulates Hsp70 transcription in Crassostrea hongkongensis[J]. Scientific Reports, 7(1): 1401. [25] Yue S J, Xin L T, Fan Y C, et al.2017. Herb pair Danggui-Honghua: Mechanisms underlying blood stasis syndrome by system pharmacology approach[J]. Scientific Reports, 7: 7(1): 1-15. |
|
|
|