|
|
Discovery of Endo-Fungi and Archaea Within Water Fern Azolla microphylla and Their Community Analyses Based on High Throughput Sequencing |
CHEN Jian, ZHENG Wei-Wen*, ZHENG Yi-Ping, CHEN Bin, ZHENG Si-Ping, ZHU Bin-Yao |
Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China |
|
|
Abstract Water fern Azolla is a striking plant-cyanobacteria mutualistic association. N2-fixing cyanobacteria and numerous bacteria have been found within the leaf cavities of Azolla using traditional techniques. The aim of the present study is to explore the genetic diversity of microbial community, particularly fungi and archaea, employing scanning electron microscopy (SEM), fluorescence in situ hybridization (FISH) and high throughout sequencing technique. 250 microbial samples isolated from 120 leaf cavities of fresh and healthy Azolla microphylla fronds were examined with both fluorescence microscopy and electron microscopy. Fungi-like structures, including hyphae, ascus, ascospore, conidium and basidium, were found in 230 samples. Eighty percent of fungi-like structures were positioned in leaf 7th to leaf 15th, indicating the older of leaf age, the more number of fungi detected. Archaea was investigated positively in 86% of the samples, and there was no correlation between the abundance and the leaf age. Through high throughout sequencing both fungi and archaea were identified qualitatively and quantitatively. The results showed that there were Ascomycota(67.39%), Phragmoplastophyta (31.72%), Cordycipitaceae (0.56%), Entomophthoromycota (0.33%), totally 4 fungal phyla, and 2 archaeal phyla with dominance of Euryarchaeota (99.68%) co-existing in Azolla. The results of this study implied that the microecosystem within Azolla was much more complex than we originally thought. It also indicates that Azolla is a valuable model plant for the study of plant-microbe interaction.
|
Received: 15 March 2019
|
|
Corresponding Authors:
bcfaas01@hotmail.com
|
|
|
|
[1] 崔恒林. 2016. 嗜盐古菌分类学研究进展[J]. 微生物学通报, 43(5): 1113-1122. (Cui H L.2016. Taxonomy of halophilic archaea: A review[J]. Microbiology China, 43(5): 1113-1122.) [2] 刘中柱, 郑伟文. 1989. 中国满江红[M]. 农业出版社, 北京. pp. 5-8. (Liu Z Z, Zheng W W.1989. Azolla in China[M]. Agricultural Publishing House, Beijing, pp. 5-8.) [3] 郑斯平, 陈彬, 关雄, 等. 2008. 小叶满江红内生细菌多样性的PCR-DGGE及电子显微镜分析[J]. 农业生物技术学报, 16(3): 508-514. (Zheng S P, Chen B, Guan X, et al.2008. Diversity analysis of endophytic bacteria within Azolla microphylla using PCR-DGGE and electron microscopy[J]. Journal of Agricultural Biotechnology,16(3): 508-514.) [4] 郑斯平, 陈彬, 王瑾, 等. 2012. 小叶满江红(Azolla micriophylla)内生细菌多样性的T-RFLP分析[J]. 安徽农业科学, 40(29): 14185-14187, 14270.(Zheng S P, Chen B, Wang J, et al. 2012. T-RFLP analysis on diversity of endophytic bacteria in Azolla microphylla[J]. Journal of Anhui Agriculture Sciences, 40(29): 14185-14187, 14270.) [5] 郑伟文, 黄进华, 林永辉. 1990. 满江红体内细菌及其与宿主的相互作用[J]. 电子显微学报, 9(3): 46-47. (Zheng W W, Huang J H, Lin Y H.1990. Bacteria within Azolla and its interaction with the host plant[J]. Journal of Chinese Electron Microscopy Society, 9(3): 46-47.) [6] Bauersachs T, Speelman E N, Hopmans E C, et al.2010. Fossilized glycolipids reveal past oceanic N2 fixation by heterocystous cyanobacteria[J]. Proceedings of the National Academy of Sciences of the USA, 107(45): 19190-19194. [7] Brinkhuis H, Schouten S, Collinson M E, et al.2006. Episodic fresh surface waters in the Eocene Arctic Ocean[J]. Nature, 441(7093): 606-609. [8] Bujak J.2007. The Azolla story. Climate change and Arctic hydrocarbons[J]. GEO ExPro, 4(4): 66-72. [9] Carrapico F.1991. Are bacteria the 3rd partner of the Azolla-Anabaena symbiosis?[J]. Plant Soil, 137(1): 157-160. [10] Carrapiço F.2015. Can we understand evolution without symbiogenesis?[M] In: Gontier N (ed) Reticulate evolution, vol 3. Springer International Publishing. Cham, pp. 81-105. [11] Dijkhuizen L W, Brouwer P, Bolhuis H, et al.2017. Is there foul play in the leaf pocket? The metagenome of floating fern Azolla reveals endophytes that do not fix N2 but may denitrify[J]. New Phytologist, 217(1): 453-466. [12] Eily A N, Pryer K M, Li F W.2019. A first glimpse at genes important to the Azolla-Nostoc symbiosis[J]. Symbiosis, 78(2): 149-162. [13] Forni C, Riov J, Grilli Caiola M, et al.1992. Indole-3-acetic acid (IAA) production by Arthrobacter species isolated from Azolla[J]. Jounal of General Microbiology, 138(2): 377-381. [14] Gates J E, Fisher R W, Candle R A.1980. The occurrence of corynoforme bacteria in the leaf cavity of Azolla[J]. Archives of Microbiology, 127(2): 163-165. [15] Jouko R.2009. Relation Between Cyanobacterial Symbionts in Lichens and Plants[M]. Microbiology Monographys Vol.8, Springer-Verlag. Berlin Heidelberg, pp. 265-270. [16] Lechno Y S, Nierzwicki-Bauer S A, Rai A N, et al.2002. Cyanobacteria in Symbiosis[M]. The Netherlands: Kluwer Academic Publishers, Dordrechr, pp. 153-178. [17] Li F W, Brouwer P, Carretero-Paulet L, et al.2018. Fern genomes elucidate land plant evolution and cyanobacterial symbioses[J]. Nature Plants, 4: 460-472. [18] Marcel G A, van-Der H, Francis M, et al.2014. Mycorrhizal ecology and evolution: The past, the present, and the future[J]. New Phytologist, 205(4): 1406-1423. [19] Newton J W, Herman A J.1979. Isolation of cyanobacteria from the aquatic fern Azolla[J]. Archives of Microbiolgy, 120(2): 161-165. [20] Nierzwicki-Bauer S A, Aulfinger H.1990. Ultrastructural characterization of eubacteria residing within leaf cavities of symbiotic and cyanobiont-free Azolla mexicana[J]. Current Microbiology, 21(2): 123-129. [21] Nierzwicki-Bauer S A, Aulfinger H.1991. Occurrence and ultrastructural characterization of bacteria in association with Azolla[J]. Applied and Environmental Microbiology, 57(12): 3629-3636. [22] Oh D, Porter K, Russ B, et al.2010. Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds[J]. Extremophiles, 14(2): 161-169. [23] Pablo R H, Leonard S V O, Gabriele B, et al.2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes[J]. Microbiology and Molecular Biology Reviews, 79(3): 293-320. [24] Paul B, Henriette S, Klaas G J N, et al.2018. Growing Azolla to produce sustainable protein feed: The effect of differing species and CO2 concentrations on biomass productivity and chemical composition[J]. Journal of the Science of Food and Agriculture, 98(12): 4759-4768. [25] Plazinski J, Taylor R, Shaw W, et al.1990. Isolation of Agrobacterium sp. strain from the Azolla leaf cavity[J]. FEMS Microbiology Letters, 70(1): 55-59. [26] Schimak M P, Kleiner M, Wetzel S, et al.2016. MiL-FISH: multilabeled oligonucleotides for fluorescence in situ hybridization improve visualization of bacterial cells[J]. Applied and Environmental Microbiology, 80(1): 62-70. [27] Serrano R, Carrapico F, Vidal R.1999. The presence of lectins in bacteria associated with Azolla-Anabaena symbiosis[J]. Symbiosis, 15: 169-178. [28] Wrede C, Dreier A, Kokoschka S.et al.2012. Archaea in Symbiosis[J]. Archaea, 2012, DOI: 10.1155/2012/596846 [29] Youssef N H, Ashlock-Savage K N, Elshahed M S.2012. Phylogenetic diversities and community structure of members of the extremely halophilic archaea (Order Halobacteriales) in multiple saline sediment habitats[J]. Applied and Environmental Microbiology, 78(5): 1332-1344. [30] Zheng W, Rang L, Bergman B.2009. Structural Characteristics of the Cyanobacterium-Azolla Symbioses[M]. Microbiology Monographys Vol.8, Springer-Verlag. Berlin Heidelberg, pp. 235-263. |
|
|
|