|
|
Genetic Diversity Analysis of Major Indigenous Chicken (Gallus gallus) Breeds in Zhejiang Province |
WANG Zhen-Zhen1, 2, *, HUANG Ling-Ling2, 3, *, TIAN Yong2, YU Zao-Sheng4, SHI Meng-Da5, ZENG Tao2, LU Li-Zhi1, 2, ** |
1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; 2 Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; 3 College of Animal Science and Technology, Fujian Agriculture and Forestry University, Fujian 350002, China; 4 Songyang County Zao Shang Hao Queshan Chicken Breeding Co., Ltd., Lishui 323000, China; 5 Xinchang County Gongting Huang Chicken Breeding Co., Ltd., Shaoxing 312530, China |
|
|
Abstract Indigenous chicken (Gallus gallus) breeds are important part of China's poultry genetic resources. Zhejiang province has a long history of breeding chicken and has various chicken genetic resources. In order to study the genetic diversity and genetic structure of main chicken breeds in Zhejiang province and promote the protection and rational development and utilization of different chicken breeds resource, the present study used short tandem repeat (STR) typing technique to detect the genetic diversity of 6 chicken breeds Queshan chicken, Xianju chicken, Xiaoshan chicken, Silky chicken, Longyou Ma chicken, and Baier Huang chicken (total of 358) at 26 microsatellite loci. The results showed that 153 effective alleles were detected at 26 sites in 6 populations, and the average values of effective number of alleles (Ne), expected heterozygousity (He), gene flow (Nm) and Shannon information index I were 5.906 9, 0.795 9, 2.007 and 1.925 1, respectively, and the polymorphism information content (PIC) was 0.24 to 0.87. Nei genetic distance was 0.103 5~0.380 9, among which the genetic distance between Queshan chicken and Xiaoshan chicken was the farthest (0.3809), followed by Queshan chicken and Baier Huang chicken (0.1072), and the genetic distance of Longyou Ma chicken and Xianju chicken was the smallest (0.1035). The results of cluster analysis showed that Queshan chicken and Baier Huang chicken were a single cluster and Xianju chicken and Longyou Ma chicken were a group. All the 6 groups had high genetic diversity, among which the Baier Huang chicken had the highest genetic diversity, the Silky chicken had the lowest genetic diversity, and the similarity order of Queshan chicken with other chicken breeds was Baier Huang chicken, Silky chicken, Longyou Ma chicken, Xianju chicken and Xiaoshan chicken consecutively. In this study, the genetic diversity of 6 chicken breeds in Zhejiang province was analyzed, and the genetic structure of the main chicken breeds in Zhejiang province was further improved, which might provide basic data for the development and utilization of chicken genetic resources.
|
Received: 05 May 2019
|
|
Corresponding Authors:
lulizibox@163.com
|
|
|
|
[1] 包文斌, 束婧婷, 孟春玲, 等. 2007. 安徽两个地方鸡品种遗传多样性的微卫星DNA分析[J]. 安徽农业大学学报, 34(3): 379-383. (Bao W B, Shu J T, Meng C L, et al.2007. Analysis on genetic diversity of two Anhui native chicken breeds with microsatellite markers[J]. Journal of Anhui Agricultural University, 34(3): 379-383.) [2] 陈红菊, 岳永生, 樊新忠, 等. 2003. 利用微卫星标记分析山东地方鸡品种的遗传多样性[J]. 遗传学报, 30(9): 855-860. (Chen H J, Yue Y S, Fan X Z, et al.2003. Analysis of genetic diversity of Shandong indigenous chicken breeds using microsatellite marker[J]. Acta Genetica Sinica, 30(9): 855-860.) [3] 傅衍, 牛冬, 阮晖, 等. 2001. 浙江省地方鸡种的遗传多样性研究[J]. 遗传学报, 28(7): 606-613. (Fu Y, Niu D, Ruan H, et al.2001. Studies of genetic diversity of Zhejiang native chicken breeds[J]. Acta Genetica Sinica, 28(7): 606-613.) [4] 管宇, 张香云, 徐群芳, 等. 2009. 哈迪-温伯格平衡检验及其基因频率的估计[J]. 浙江林学院学报, 26(1): 122-126. (Guan Y, Zhang X Y, Xu Q F, et al.2009. Hardy-Weinberg equilibrium testing and estimating of allele frequency[J]. Journal of Zhejiang Forestry College, 26(1): 122-126.) [5] 贾晓旭, 唐修君, 樊艳凤, 等. 2018. 江苏省地方鸡品种线粒体DNA遗传多样性分析[J]. 农业生物技术学报, 26(10): 1754-1761. (Jia X X, Tang X J, Fan Y F, et al.2018. Genetic diversity analysis of mitochondrial DNA in Jiangsu native chicken (Gallus gallus domesticus) breeds[J]. Journal of Agricultural Biotechnology, 26(10):1754-1761.) [6] 李红霞. 2002. 黄羽肉鸡主要经济性状与微卫星标记的相关分析[D]. 硕士学位论文, 四川农业大学, 导师: 朱庆, pp. 10-38. (Li H X.2002. The corrclation analysis of microsatellite DNA markers for some production performances in chicken[D].Thesis for M.S., Sichuan Agricultural University, Supervisor: Zhu Q, pp. 10-38.) [7] 李慧芳, 陈宽维, 汤青萍, 等. 2005. 江西7个地方鸡品种遗传多样性的微卫星分析[J]. 中国兽医学报, 25(6): 664-667. (Li H F, Chen K W, Tang Q P, et al.2005. Microsatellite analysis of genetic diversity of seven indigenous chicken breeds in Jiangxi[J]. Chinese Journal of Veterinary Science, 25(6): 664-667.) [8] 刘雅丽, 章晓伟, 马敏彪, 等. 2016. 利用微卫星标记检测仙居鸡保种效果[J]. 中国家禽, 38(22): 67-70. (Liu Y L, Zhang X W, Ma M B, et al.2016. The effect of seed preservation of Xianju chicken was tested by microsatellite markers[J]. China Poultry, 38(22): 67-70.) [9] 刘玉香. 2014. 基于微卫星标记分析黄脊竹蝗的种群遗传结构和有效种群大小[D]. 硕士学位论文, 南京师范大学, 导师: 蒋国芳, pp. 44-48. (Liu Y X.2014. Population genetic structure and effective population size of the bamboo locust Ceracris Kiangsu based on microsatellite markers[D].Thesis for M.S., Nanjing Normal University, Supervisor: Jiang G F, pp. 44-48.) [10] 沈立权. 2004. 微卫星DNA标记与新扬州鸡蛋用性状的相关研究[D]. 硕士学位论文, 扬州大学, 导师: 王志跃, pp. 8-10. (Shen L Q.2004. The correlation analysis of microsatellite dna markers for egg charaeterin new Yangzhou chicken[D].Thesis for M.S., Yangzhou University, Supervisor: Wang Z Y, pp. 8-10.) [11] 陶争荣, 徐小钦, 沈军达, 等. 2016. 6个野鸭群体的遗传多样性及其与绍兴麻鸭的亲缘关系分析[J]. 农业生物技术学报, 24(8): 1173-1180. (Tao Z R, Xu X Q,Shen J D, et al.2016. Analysis of genetic diversity and relationship among 6 wild duck breeds and Shaoxing partridge duck (Anas platyrhynchos domestic)[J]. Journal of Agricultural Biotechnology, 24(8): 1173-1180.) [12] 屠云洁, 陈宽维, 沈见成, 等. 2005. 利用微卫星标记分析四川8个地方鸡品种遗传多样性[J]. 遗传, 27(5): 724-728. (Tu Y J, Chen K W, Shen J C, et al.2005. Analysis of genetic diversity of Sichuan indigenous chicken breeds using microsatellite markers[J]. Hereditas, 27(5): 724-728.) [13] 屠云洁, 陈宽维, 汤青萍, 等. 2004. 利用微卫星标记分析贵州5个地方鸡品种遗传多样性[J]. 中国家禽, 8(1): 118-121. (Tu Y J, Chen K W, Tang Q P, et al.2004. Analysis of genetic diversity of Guizhou indigenous chicken breeds using microsatellite markers[J]. Chinese Poultry Science, 8(1): 118-121.) [14] 吾买尔江·艾孜木, 丁丽媛, 杜拉提•卡衣马尔旦, 等. 2017. 基于STR分型检测技术的新疆九个家鸡资源遗传多样性分析[J]. 中国家禽, 39(8):10-14. (Wu M E J, Ding L Y, Du L T, et al.2017. Genetic diversity of nine domestic chicken breeds in Xinjiang based on STR markers[J]. China Poultry, 39(8): 10-14.) [15] 吴信生, 陈国宏, 王得前, 等. 2004. 利用微卫星技术分析中国部分地方鸡种的遗传结构[J]. 遗传学报, 31(1): 43-50. (Wu X S, Chen G H, Wang D Q, et al.2004. Analysis of genetic relationship among chinese native chicken breeds using microsatellites marker[J]. Acta Genetica Sinica, 31(1): 43-50.) [16] 袁青妍, 虞德兵, 吴春琴, 等. 2010. 灵昆鸡群体微卫星DNA遗传多样性研究[J]. 浙江农业学报, 22(4): 458-463. (Yuan Q Y, Yu D B, Wu C Q, et al.2010. Genetic diversity of Lingkun chicken based on microsatellite markers[J]. Acta Agriculturae Zhejiangensis, 22(4): 458-463.) [17] 袁青妍, 虞德兵, 吴春琴, 等. 2008. 微卫星标记与灵昆鸡体重、体尺性状的相关分析[J]. 生物技术通报,(S1): 282-286, 290.286, 290.) [18] 曾涛, 孙思维, 田勇, 等. 2017. 利用微卫星标记分析雁荡土鸡及其他3个鸡群体遗传多样性[J]. 浙江农业学报, 29(7): 1070-1076. (Zeng T, Sun S W, Tian Y, et al.2017. Genetic diversity of Yandang chicken and other three chicken populations using microsatellite markers[J]. Acta Agriculturae Zhejiangensis, 29(7): 1070-1076.) [19] 张建勤, 孙兆军, 孟德连, 等. 2005. 用微卫星标记对宁夏固原地区两个鸡群体遗传多样性的分析[J]. 中国农学通报, 21(4): 4-6. (Zhang J L, Sun Z J, Meng D L, et al.2005. Study on genetic polymorphism of two chicken populations in Guyuan district using microsatellite[J]. Chinese Agricultural Science Bulletin, 21(4): 4-6.) [20] Abdel M H, Zong Y Y, Abdallah A, et al.2019. Genetic diversity analysis of fourteen geese breeds based on str genotyping technique[J]. Asian-Australasian Journal of Animal Sciences. 2019. DOI: 10.5713/ajas.18.0589. [21] Abe H, Gemmell N J.2016. Evolutionary footprints of short tandem repeats in avian promoters[J]. Scientific Reports, 6(1): 19421. [22] Booy G, Hendriks R J J, Smulders M J M, et al.2000. Genetic diversity and the survival of populations[J]. Plant Biology, 2(4): 379-395. [23] Ceccobelli S, Karsli T, Di Lorenzo P, et al.2015. Genetic diversity of Cornigliese sheep breed using STR markers[J]. Small Ruminant Research, 123(1): 62-69. [24] Fan W, Xu L, Cheng H, et al.2018. Characterization of duck (Anas platyrhynchos) short tandem repeat variation by population-scale genome resequencing[J]. Frontiers in Genetics, 9: 520. [25] Fitzpatrick S W, Reid B N.2019. Does gene flow aggravate or alleviate maladaptation to environmental stress in small populations?[J]. Evolutionary Applications, 12(7):1402-1416. [26] Groeneveld L F, Lenstra J A, Eding H, et al.2010. Genetic diversity in farm animals-a review[J]. Animal Genetics, 41(S1): 6-31. [27] Gymrek M.2017. A genomic view of short tandem repeats[J]. Current Opinion in Genetics & Development, 44: 9-16. [28] Hughes A R, Inouye B D, Johnson M T, et al.2008. Ecological consequences of genetic diversity[J]. Ecology Letters, 11(6): 609-623. [29] Milligan B G, Leebens-Mack J, Strand A E.2010. Conservation genetics: Beyond the maintenance of marker diversity[J]. Molecular Ecology, 3(4): 423-435. [30] Nei M.1978. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 89(3): 583-590. [31] Özdemir D, Cassandro M.2018. Assessment of the population structure and genetic diversity of Denizli chicken subpopulations using SSR markers[J]. Italian Journal of Animal Science, 17(2): 312-320. [32] Powell R B J R.1979. Evolution and the genetics of populations, Vol. 4: Variability within and among natural populationsby Sewall Wright[J]. American Scientist, 67(1): 108. [33] Rousset F.2008. genepop'007: A complete re-implementation of the genepop software for Windows and Linux[J]. Molecular Ecology Resources, 8(1): 103-106. [34] Slatkin M.1987. Gene flow and the geographic structure of natural populations[J]. Science, 236(4803): 787-792. [35] Smulders M J M, Esselink G D, Everaert I, et al.2010. Characterisation of sugar beet (Beta vulgaris L. ssp. vulgaris) varieties using microsatellite markers[J]. BMC Genetics, 11(1): 41. [36] Tamura K, Dudley J, Nei M, et al.2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution, 24(8): 1596-1599. [37] van Oosterhout C, Hutchinson W F, Wills D P M, et al.2004. Microchecker: Software for identifying and correcting genotyping errors in microsatellite data[J]. Molecular Ecology Notes, 4(3): 535-538. [38] van Oppen M J H, C R, GF T, et al.2000. Extensive homoplasy, nonstepwise mutations, and shared ancestral polymorphism at a complex microsatellite locus in lake malawi cichlids[J]. Molecular Biology & Evolution, 17(4): 489-498. [39] Weigend S, Romanov M N.2001. Current strategies for the assessment and evaluation of genetic diversity in chicken resources[J]. World's Poultry Science Journal, 57(3): 275-288. [40] Yeh F C, Yang R C, Boyle T B J, 1999. PopGene version 1.3l, microsoft Window-based freeware for population genetic analysis[Z]. University of Alberta and Centre for International Forestry Research [41] Zhang X, Leung F C, Chan D K, et al.2002. Genetic diversity of Chinese native chicken breeds based on protein polymorphism, randomly amplified polymorphic DNA, and microsatellite polymorphism[J]. Poultry Science, 81(10): 1463-1472. |
[1] |
ZHU Xiao-Feng, XU Hou-Qiang, CHEN Wei, CHEN Ying-Lian, NI Kai, WU Xiao-Min, NI Meng-Meng, LU Xian-Jun. Cloning, Expression and Bioinformatics Analysis of IGF-1 and IGF-2 Genes in Congjiangxiang Pigs (Sus scrofa)[J]. 农业生物技术学报, 2019, 27(8): 1382-1391. |
|
|
|
|