|
|
Advances in Research on Single Base Editing Tool--Adenine Base Editor ABE |
LI Guang-Dong, ZHANG Lu, FU Jun-Cai, LIAN Zheng-Xing, LIU Guo-Shi* |
College of Animal Science and Technology, China Agriculture University, Beijing 100193, China |
|
|
Abstract Since the birth of the gene editing technology CRISPR/Cas9, it has been widely used in the fields of gene knockout, knock-in, and base repair. But its inefficiency and off-target cutting, low security, greatly limits the traditional CRISPR/Cas9 application in high-resolution single-base editing. The emergence of the base editor (BE) based on traditional CRISPR/Cas9 overcomes these drawbacks. The cytosine base editor (CBE) converts C•G to T•A, adenine base editor (ABE) enables the conversion of A•T to G•C, enabling efficient single base substitutions without introducing double-strand breaks, which avoids an uncontrollable insertion or deletion mutation (Indels) induced by the traditional CRISPR/Cas9 non-homologous end joining (NHEJ). Most of the genetic diseases in human are caused by base mutations, and the emergence of single-base editing tools can correct a certain proportion of pathogenic SNPs to some extent. Therefore it has broad application prospects in animal model construction, functional genomics research, molecular breeding, clinical medicine, and translational medicine. In this paper, the principle, development, application, opportunities and challenges of the just emerging ABEs with lower off-target efficiency are reviewed, in order to provide reference for the research and application of single-base editing technology.
|
Received: 30 March 2019
|
|
Corresponding Authors:
gshliu@cau.edu.cn
|
|
|
|
1 Endo M, Mikami M, Toki S.2016. Biallelic gene targeting in rice[J]. Plant Physiology, 170(2): 667-677. 2 Gaudelli N M, Komor A C, Rees H A, et al.2017. Programmable base editing of A•T to G•C in genomic dna without dna cleavage[J]. Nature, 551(7681): 464-471. 3 Gupta P K.2019. Beyond crispr: Single base editors for human health and crop improvement[J]. Current Science, 116(3): 386-397. 4 Hao L, Ruiying Q, Xiaoshuang L, et al.2019. Crispr/cas9-mediated adenine base editing in rice genome[J]. Rice Science, 26(2): 125-128. 5 Holly A. Rees A D R L.2018. Base editing: Precision chemistry on the genome and transcriptome of living cells[J]. Nature Reviews Genetics, 19: 770-788. 6 Hua K, Tao X, Yuan F, et al.2018. Precise A•T to G•C base editing in the rice genome[J]. Molecular Plant, 11(4): 627-630. 7 Hua K, Tao X, Zhu J.2019. Expanding the base editing scope in rice by using cas9 variants[J]. Plant Biotechnology Journal, 17(2): 499-504. 8 Hu J H, Miller S M, Geurts M H, et al.2018. Evolved cas9 variants with broad pam compatibility and high DNA specificity[J]. Nature, 556(7699): 57-63. 9 Jin S, Zong Y, Gao Q, et al.2019. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice[J]. Science, 364(6437): 292-295. 10 Kang B, Yun J, Kim S, et al.2018. Precision genome engineering through adenine base editing in plants[J]. Nature Plants, 4(7): 427-431. 11 Kim D, Kim D, Lee G, et al.2019. Genome-wide target specificity of crispr rna-guided adenine base editors[J]. Nature Biotechnology, 37:430-435. 12 Kim E, Koo T, Park S W, et al.2017a. In vivo genome editing with a small cas9 orthologue derived from campylobacter jejuni[J]. Nature Communications, 8:14500. 13 Kim Y B, Komor A C, Levy J M, et al.2017b. Increasing the genome-targeting scope and precision of base editing with engineered cas9-cytidine deaminase fusions[J]. Nature Biotechnology, 35(4): 371-376. 14 Koblan L W, Doman J L, Wilson C, et al.2018. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J]. Nature Biotechnology, 36(9): 843-846. 15 Komor A C, Kim Y B, Packer M S, et al.2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 533(7603): 420-424. 16 Landrum M J, Lee J M, Benson M, et al.2016. Clinvar: Public archive of interpretations of clinically relevant variants[J]. Nucleic Acids Research, 44(D1): D862-D868. 17 Lee C, Jo D H, Hwang G H, et al.2019. Crispr-pass: Gene rescue of nonsense mutations using adenine base editors[J]. bioRxiv, 545723. 18 Lee C M, Cradick T J, Bao G.2016. The neisseria meningitidis crispr-cas9 system enables specific genome editing in mammalian cells[J]. Molecular Therapy, 24(3): 645-654. 19 Lee H K, Willi M, Miller S M, et al.2018. Targeting fidelity of adenine and cytosine base editors in mouse embryos[J]. Nature Communications, 9(1): 4804. 20 Li C, Zong Y, Wang Y, et al.2018a. Expanded base editing in rice and wheat using a cas9-adenosine deaminase fusion[J]. Genome Biology, 19(1): 59. 21 Li X, Wang Y, Liu Y, et al.2018b. Base editing with a cpf1-cytidine deaminase fusion[J]. Nature Biotechnology, 36(4): 324-327. 22 Liang P, Sun H, Zhang X, et al.2018. Effective and precise adenine base editing in mouse zygotes[J]. Protein & Cell, 9(9): 808-813. 23 Liang P, Xie X, Zhi S, et al.2019. Genome-wide profiling of adenine base editor specificity by endov-seq[J]. Nature Communications, 10(1): 67. 24 Liu Z, Chen M, Chen S, et al.2018a. Highly efficient rna-guided base editing in rabbit[J]. Nature Communications, 9(1): 2717. 25 Liu Z, Lu Z, Yang G, et al.2018b. Efficient generation of mouse models of human diseases via abe- and be-mediated base editing[J]. Nature Communications, 9(1): 2338. 26 Lu Z, Huang X.2018. Base editors: A powerful tool for generating animal models of human diseases[J]. Cell Stress, 2(10): 242-245. 27 Ma Y, Yu L, Zhang X, et al.2018. Highly efficient and precise base editing by engineered dcas9-guide tRNA adenosine deaminase in rats[J]. Cell Discovery, 4(1): 39. 28 Ma Y, Zhang J, Yin W, et al.2016. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells[J]. Nature methods, 13(12): 1029-1035. 29 Marx V.2018. Base editing a crispr way[J]. Nature Methods, 15(10): 767-770. 30 Müller M, Lee C M, Gasiunas G, et al.2016. Streptococcus thermophilus crispr-cas9 systems enable specific editing of the human genome[J]. Molecular Therapy, 24(3): 636-644. 31 Nishida K, Arazoe T, Yachie N, et al.2016. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 353(6305): aaf8729. 32 Nishimasu H, Shi X, Ishiguro S, et al.2018. Engineered crispr-cas9 nuclease with expanded targeting space[J]. Science, 361(6408): 1259-1262. 33 Qin W, Lu X, Liu Y, et al.2018. Precise A•T to G•C base editing in the zebrafish genome[J]. BMC Biology, 16(1): 139. 34 Ren R, Belmonte J C I, Liu G.2018. Adenine base editing to mimic or correct disease mutations in rodents[J]. Protein & Cell, 9(9): 752-753. 35 Rubin A J, Parker K R, Satpathy A T, et al.2019. Coupled single-cell crispr screening and epigenomic profiling reveals causal gene regulatory networks[J]. Cell, 176(1-2): 361-376. 36 Ryu S, Koo T, Kim K, et al.2018. Adenine base editing in mouse embryos and an adult mouse model of duchenne muscular dystrophy[J]. Nature Biotechnology, 36(6): 536-539. 37 Seo H, Kim J S.2018. Towards therapeutic base editing[J]. Nature Medcine, 24(10): 1493-1495. 38 Simeonov D R, Marson A.2019. Crispr-based tools in immunity[J]. Annual Review of Immunology, 37(1): 571-597. 39 Song C, Jiang T, Richter M, et al.2019. Adenine base editing in an adult mouse model of tyrosinaemia[J]. Nature Biomedical Engineering, 1. 40 Svitashev S, Young J K, Schwartz C, et al.2015. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using cas9 and guide RNA[J]. Plant Physiology, 169(2): 931-945. 41 Voytas D F, Gao C.2014. Precision genome engineering and agriculture: Opportunities and regulatory challenges[J]. Plos Biology, 12(6): e1001877. 42 Yan F, Kuang Y, Ren B, et al.2018. Highly efficient A•T to G•C base editing by cas9n-guided trna adenosine deaminase in rice[J]. Molecular Plant, 11(4): 631-634. 43 Yang L, Zhang X, Wang L, et al.2018. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of tada deaminase with cas9 variants[J]. Protein & Cell, 9(9): 814-819. 44 Zetsche B, Gootenberg J S, Abudayyeh O O, et al.2015. Cpf1 is a single rna-guided endonuclease of a class 2 crispr-cas system[J]. Cell, 163(3): 759-771. 45 Zhao J, Lai L, Ji W, et al.2019. Genome editing in large animals: Current status and future prospects[J]. National Science Review, 6(3): 402-420. 46 Zuo E, Sun Y, Wei W, et al.2019. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 364(6437): 289-292. |
|
|
|