|
|
Research on Ammonia Nitrogen, Total Phosphorus and Bacteria Diversity in Soil After Biogas Slurry Irrigation |
YU Wei-Wei, ZHANG Min-Ne*, ZHU Jia-Yue, DU Bang-Hao, YANG Shuo, XIE Ming-Yang |
Key Laboratory of Hydraulic & Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China |
|
|
Abstract The livestock wastewater can be reused by biogas slurry irrigation in farmland to solve the problem of subsequent disposal to a certain extent. But the loss of nitrogen and phosphorus will lead to the risk of groundwater pollution after long-term biogas slurry irrigation. In this study, the adsorption and migration behaviors of ammonia nitrogen (NH3-N) and total phosphorus (TP) were investigated by simulated biogas slurry irrigation soil column with different soil media. Illumina MiSeq high-throughput sequencing technology was applied to study the soil bacteria diversity variation before and after biogas slurry irrigation. The results showed that different soil media had different effects on the adsorption capacity of NH3-N and TP. Purple soil 1 had the strongest adsorption capacity of NH3-N and TP, while river sand had the weakest adsorption capacity. Two days after biogas slurry irrigation, purple soil 1 quickly adsorbed NH3-N in the surface soil, while the adsorption of ammonia nitrogen decreases in the bottom soil with time. After biogas slurry irrigation, NH3-N in biogas slurry migrated to -25 cm soil layer in purple soil 1, and the concentration of NH3-N in leachate was 11.52 mg/L; NH3-N migrated to -45 cm soil layer in river sand, and the concentration of NH3-N was 211.80 mg/L, which had a trend of continuous downward migration. The concentration of TP in leachate of purple soil 1 and sandy loam soil at -35 cm layer was 0.23 mg/L and 0.63 mg/L, respectively, which could adsorbed and fixed total phosphorus and prevented phosphorus from migrating downward. Meanwhile, the irrigation of biogas slurry reduced the bacteria diversity and abundance, and changes the community structure in purple soil 1. Shannon index and Chao index of purple soil 1 after biogas slurry irrigation were 5.510 and 1122.408, respectively. TM7 (Saccharibacteria) was the most abundant and Verrucomicrobia was the least abundant. This study provides a certain theoretical basis for the adsorption and migration process of nitrogen and phosphorus elements in soil after biogas slurry irrigation. The impact of soil bacteria diversity is also revealed after biogas slurry irrigation. In addition, the subsequent impact on purple soil and surrounding environment after biogas slurry irrigation is in favor of further comprehension.
|
Received: 18 March 2019
|
|
Corresponding Authors:
zmn365121353@163.com
|
|
|
|
1 邓蓉, 陈玉成, 史秋萍. 2013. 模拟沼液淋溶灌溉对土壤下渗水的影响[J]. 水土保持学报, 27(3): 68-71(Deng R, Chen Y C, Shi Q P. 2013. Effects of simulated biogas slurry leaching irrigation on soil infiltration[J]. Journal of Soil and Water Conservation, 27(3): 68-71.) 2 冯丹妮. 2014. 连年施用沼液对"稻—油"轮作土壤微生物学特性的影响[D]. 硕士学位论文, 四川农业大学, 导师: 伍钧. pp: 1-56. (Feng D N.2014. Influence of continuous application of biogas slurry on microbial characteristics in rice-rape rotation operation soil[D]. Thesis for M.S., Sichuan Agricultural University, Supervisor: Wu J. pp: 1-56.) 3 姜桂华. 2004. 铵态氮在土壤中吸附性能探讨[J]. 建筑科学与工程学报, 21(2): 32-34. (Jiang GH.2004. Discussion about NH4+-N adsorptive ability in soils[J]. Journal of Architecture and Civil Engineering, 21(2): 32-34.) 4 靳红梅, 常志州, 叶小梅, 等. 2011. 江苏省大型沼气工程沼液理化特性分析[J]. 农业工程学报, 27(1): 291-296. (Jin H M, Chen Z Z, Ye X M, et al.2011. Physical and chemical characteristics of anaerobically digested slurry from large-scale biogas project in Jiangsu province[J]. Transactions of the Chinese Society of Agricultural Engineering, 27(1): 291-296.) 5 李波, 杨欣. 2006. 渗滤液中氨氮在土壤和地下水中迁移转化实验[J]. 环境卫生工程, 14(2):20-22. (Li B, Yang X.2006. Transfer and transformation of NH3-N from leachate on soil groundwater[J]. Environmental Health Engineering, 14(2): 20-22.) 6 李慧. 2014. 氨氮在黄土包气带中吸附解吸特征和影响因素探讨[D].硕士学位论文, 长安大学, 导师: 王文科. pp:1-91. (Li H.2014. The characteristic and influence factors of ammonia-nitrogen adsorption desorption in the loess[D]. Thesis for M.S., Chang' An University, Supervisor: Wang W K. pp: 1-91.) 7 刘荣厚, 郝元元, 叶子良, 等. 2006. 沼气发酵工艺参数对沼气及沼液成分影响的实验研究[J]. 农业工程学报, 22(1): 85-88. (Liu R H, Hao Y Y, Ye Z L, et al.2006. Experimental research on technical parameters of anaerobic fermentation for biogas production[J]. Transactions of the Chinese Society of Agricultural Engineering, 22(1): 85-88.) 8 吕家珑, Fortune S, Brookes P C.2003. 土壤磷淋溶状况及其Olsen磷"突变点"研究[J]. 农业环境科学学报, 22(2):142-146. (Lv J L, Fortune S, Brookes P C.2003. Research on phosphorus leaching from soil and its olsen - p "shreshold volume"[J]. Journal of Agro-Environment Science, 2003, 22(2): 142-146.) 9 孙良媛, 刘涛, 张乐,等. 2016. 中国规模化畜禽养殖的现状及其对生态环境的影响[J]. 华南农业大学学报: 社会科学版, 15(2): 23-30. (Sun L Y, Liu T, Zhang L, et al.2016. The pollution of scale livestock and poultry breeding and its influence on eco-environment[J]. Journal of South China Agricultural University: Social Science Edition, 15(2): 23-30.) 10 田伟, 李刚, 陈秋会, 等. 2017. 等氮条件下化学肥料与有机肥连续大量施用下的环境风险[J]. 生态与农村环境学报, 33(5): 440-445. (Tian W, Li G, Chen Q H, et al.2017. Environmental risk caused by successive and heavy application of mineral fertilizer and compost with the same amount of nitrogen applied[J]. Journal of Ecology and Rural Environment, 33(5): 440-445.) 11 王而力, 王嗣淇, 杨立伟. 2011. 西辽河流域沙土对磷的吸附行为[J]. 环境科学研究, 24(2): 222-228. (Wang E L, Wang S Q, Yang L W.2011. Sorption behavior of phosphorus on sandy soil in western Liao river basin[J]. Research of Environmental Sciences, 24(2): 222-228.) 12 王敏锋, 严正娟, 陈硕, 等. 2016. 施用粪肥和沼液对设施菜田土壤磷素累积与迁移的影响[J]. 农业环境科学学报, 35(7): 1351-1359. (Wang M F, Yan Z J, Chen S, et al.2016. Effects of manure and biogas slurry application on phosphorus accummulation and mobility in organic vegetable soil under greenhouse[J]. Journal of Agro-Environment Science, 35(7): 1351-1359.) 13 王玮, 孙岩斌, 周祺, 等. 2015. 国内畜禽厌氧消化沼液还田研究进展[J]. 中国沼气, 33(2): 51-57. (Wang W, Sun Y B, Zhou Q, et al.2015. A review on irrigation of biogas slurry from livestock manure anaerobic fermentation in China[J]. China Bioga, 33(2): 51-57.) 14 谢真越, 卓慕宁, 李定强, 等. 2013. 不同施肥水平下菜地径流氮磷流失特征[J]. 生态环境学报, 22(8): 1423-1427. (Xie Z, Zhuo M N, Li D Q, et al.2013. Characretistics of nitrogen and phosphorus loss by runoff from vegetable fields under different fertilization levels[J]. Ecology and Environmental Sciences, 22(8): 1423-1427.) 15 杨志兵, 王金生, 滕彦国, 等. 2008. 垃圾渗滤液有机组分和氨氮在孔隙介质中的迁移特征[J]. 生态环境学报, 17(4): 1407-1410. (Yang Z B, Wang J S, Teng Y G, et al.2008. Transport characteristics of organic matters and ammonium in leachate in porous media[J]. Ecology and Environment, 17(4): 1407-1410.) 16 余薇薇, 闻昌智, 陈垚, 等. 2018. 沼液回灌紫色土的负荷变化对氮磷吸附迁移行为的影响[J]. 河南农业大学学报, 52(5): 118-123. (Yu W W, Wen C Z, Chen Yet al.2018. Effects of purple soil under varying biogas slurry irrigation load on adsorption and migration of nitrogen and phosphorus[J]. Journal of Henan Agricultural University, 52(5): 118-123.) 17 詹美礼, 杨璘, 张文捷, 等. 2010. 成层土壤中氨氮入渗迁移试验研究[J]. 安全与环境学报, 10(2): 11-16. (Zhan M L, Yang L, Zhan W J, el al.2010. Migration and permeation of ammonia in multilayered soils[J]. Journal of Safety and Environment, 10(2): 11-16.) 18 朱金山, 张慧, 马连杰, 等. 2018. 不同沼灌年限稻田土壤微生物群落分析[J]. 环境科学, 39(5): 2400-2411. (Zhu J S, Zhang H, Ma L J, et al.2018. Diversity of microbial community in rice paddy soil with biogas slurry irrigation analyzed by illumine sequencing technology[J]. Environmental Science, 39(5): 2400-2411.) 19 Brevik E C, Cerdà A, Mataix-Solera J, et al.2015. The interdisciplinary nature of soil[J]. Soil, 1:117-129. 20 Bergmann G T, Bates S T, Eilers K G, et al.2011. The under-recognized dominance of Verrucomicrobia in soil bacterial communities[J]. Soil Biology & Biochemistry, 43(7): 1450-1455. 21 Dalahmeh S S, Jonson H, Hylander L D, et al.2014. Dynamics and functions of bacterial communities in bark, charcoal and sand filters treating greywater[J]. Water Research, 54: 21-32. 22 Leff J W, Jones S E, Prober S M, et al.2015. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe[J]. Proceedings of the National Academy of Sciences of the USA, 112(35): 10967-10973. 23 Duan L, Wang W K, Sun Y.2013. Ammonium nitrogen adsorption-desorption characteristics and its hysteresis of typical soils from Guanzhong basin, China[J]. Asian Journal of Chemistry, 25(7): 3850-3854. 24 Morugan-Coronado A, Garcia-Orenes F, McMillan M, et al.2019. The effect of moisture on soil microbial properties and nitrogen cyclers in Mediterranean sweet orange orchards under organic and inorganic fertilization[J]. Science of Total Environment, 655: 158-167. 25 Odlare M, Pell M, Svensson K.2008. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues[J]. Waste Management, 28(7): 1246-1253. 26 Opuwaribo E, Odu C T I.1978. Ammonium fixation in Nigerian soils[J]. Soil Science, 125(5): 283-293. 27 Ramirez K S, Craine J M, Fierer N.2012. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes[J]. Global Change Biology, 18(6): 1918-1927. 28 Xu X J, Lai G L, Chi C Q, et al.2018. Purification of eutrophic water containing chlorpyrifos by aquatic plants and its effects on planktonic bacteria[J]. Chemosphere, 193:178-188. |
|
|
|