|
|
Physiological Characters and Genetic Characteristics of Heavy Panicle Type Variant, Javanica 22 (Oryza sativa ssp. javanica) |
YOU Hui XIANG Xun-Chao*, YANG Bo-Wen, LI Huai-Cheng, XU Liang, LONG Yue-Teng |
Laboratory of Plant Molecular Genetic and Breeding, Southwest University of Science and Technology, Mianyang 621010, China |
|
|
Abstract Heavy panicle type is one of the main objectives of super rice breeding, and has the optimal combination for different yield factors per each plant, and is the basis for the high yield of unit area. Heavy panicle variant, Javanica 22 (Oryza sativa ssp. javanica), is a natural variation derived from Xiangdali (Oryza sativa ssp. javanica). Investigation in Javanica 22 physiological traits and genetic characteristics contributes to clarify its utilization value. In this study, the main physiological characters, the appearance quality, eating and cooking qualities (ECQs) of Javanica 22 and its wild type Xiangdali were compared. Indica or Japonica characteristic of Javanica 22 was identified by reported 20 pairs of typical SSR markers. According to the above result of identification, cluster analysis was carried out and SSR fingerprints of 4 varieties/lines were constructed. Glutinous property was experimented by molecular marker Wx M1. The results indicated that the weight of single panicle of Javanica 22 was 7.70 g, belonging to a variant of heavy panicle type. Compared with Xiangdali, the physiological traits of Javanica 22, especially the filled grain number, seed setting rate and single panicle weight were significantly improved (P<0.01), but 1000-grain weight was significantly decreased (P<0.01). The appearance quality and ECQs were also improved. Genetic analysis of Indica or Japonica characteristic showed that Javanica 22 had 8 pairs of markers with Japonica characteristics and 12 pairs of markers with Indica characteristics, belonged to mixed characteristics of Indica and Japonica but partial to Indica, yet its wild type Xiangdali belonging to mixed characteristics of Indica and Japonica but partial to Japonica. Cluster analysis also showed that Javanica 22 belonged to the same group with Jingnuo 6 (Oryza sativa ssp. indica) and its genetic similarity coefficient was 0.63; While its wild type belonged to the same group with Jingnuo 8 (Oryza sativa ssp. japonica), and its' genetic similarity coefficient was 0.81. Glutinous identification showed that the second exon of its waxy gene had nucleotides insertion of 23 bp, which was recessive wxwx genotype. Therefore, Javanica 22 was a typical glutinous rice with lower apparent amylose content (1.42%) than its wild-type, Xiangdali (3.80%). Multiple loci variation in Javanica 22 were found by comparing the DNA fingerprints of variant and wild type in this study. The heavy panicle variant Javanica 22 had more excellent physiological traits than its wild type and its genetic background had the characteristics of Indica and Japonica but partial to Indica, which could be used as an excellent germplasm in super rice breeding and as a bridge parent in hybridization of Indica and Japonica. The conclusion has definite theoretical significance in super rice breeding.
|
Received: 13 November 2018
|
|
Corresponding Authors:
xiangxunchao@swust.edu.cn
|
|
|
|
[1] 程侃声, 王象坤, 卢义宣, 等. 1988. 云南省稻种资源的综合研究与利用: Ⅸ. 论亚洲栽培稻的籼粳分类[J]. 作物品种资源, (1): 1-5. (Cheng K S, Wang X K, Lu Y X, et al. 1988. Comprehensive research and utilization of rice germplasm resources in Yunnan Province: Ⅸ. On indica japonica classification of cultivated rice in Asia [J]. Crop variety resources, (1): 1-5.) [2] 陈瑞, 程在全, 黄兴奇, 等. 2007. 水稻优良性状控制基因的定位进展及其在染色体上的分布[J]. 遗传, 29(4): 399-412. (Chen R, Cheng Z Q, Huang X Q, et al.2007. Progress in rice genes mapping and gene distribution in chromosomes[J]. Hereditas , 29(4): 399-412.) [3] 陈峰, 高洁, 周继华,等. 2009. 水稻穗型的研究进展[J]. 江苏农业学报, 25(5): 1167-1172. (Chen F, Gao J, Zhou J H, et al.2009. Research progress of pancile shape in rice[J].Jiangsu Journal of Agricultural Sciences, 25(5): 1167-1172.) [4] 陈家润. 1957. 水稻品种试验田间记载及室内考种项目与标准[J]. 华中农业科学, 15(02): 146-149. (Chen J R.1957. Field records of rice variety trials and indoor seed testing items and standards[J]. Huazhong Agricultural Science, 15(02): 146-149.) [5] 淳雁, 李学勇. 2017. 水稻穗型的遗传调控研究进展[J]. 植物学报, 52(1): 49-29. (Chun Y, Li X Y.2017. Advances in genetic regulation of panicle type in rice[J]. Bulletin of Botany, 52(1): 49-29.) [6] 戴小军, 李文嘉, 康公平, 等. 2013. 籼粳亚种间核DNA特征性分子标记在美洲爪哇稻中的分布规律初步研究[J]. 杂交水稻, 28(1): 58-62. (Dai X J, Li W J, Kang G P, et al.2013. Studies on distribution of Indica-japonica-specific DNA markers in American Javanica rice[J]. Hybrid Rice, 28(1): 58-62.) [7] 樊叶杨, 庄杰云. 2000. 应用微卫星标记鉴别水稻釉粳亚种[J]. 遗传, 22(6): 392-394. (Fan Y Y, Zhuang J Y.2000. SSLP-based identification of subspecies in rice (Oryza sativa L.)[J]. Hereditas, 22(6): 392-394.) [8] 康翠芳, 向珣朝, 龙小林, 等. 2015. 籼爪交水稻F2群体的蒸煮食味品质研究[J]. 植物遗传资源学报, 16(3): 561-568. (Kang C F, Xiang X C, Long X L, et al.2015. Studies on cooking and eating quality of F2 population of Indica/Javanica rice[J]. Journal of Plant Genetic Resources, 16(3): 561-568.) [9] 刘坚, 陶红剑, 施思, 等. 2012. 水稻穗型的遗传和育种改良[J]. 中国水稻科学, 26(2): 227-234. (Liu J, Tao H J, Shi S, et al.2012. Genetics and breeding improvement for panicle type in rice[J]. Chinese Journal of Rice Science, 26(2): 227-234.) [10] 刘文强. 2008. 稻瘟病抗性基因Pi25(t)与产量因子相关的遗传分析及标记辅助选择[D]. 硕士学位论文, 中国农业科学院, 导师: 吴建利, pp. 20-21. (Liu W Q.2008. Genetic analysis and marker-assisted selection of rice blast resistance gene Pi25(t) related to yield factors[D]. Thesis for M.S., Chinese Academy of Agricultural Sciences, Suppervisor: Wu J L, pp. 20-21.) [11] 毛艇, 徐海, 郭艳华, 等. 2009. 利用SSR分子标记进行水稻籼粳分类体系的初步构建[J]. 华北农学报, 24(1): 119-124. (Mao T, Xu H, Guo Y H, et al.2009. Establishment of subspecies classification of Indica and Japonica system by SSR markers[J]. Acta Agriculturae Boreali-Sinica, 24(1): 119-124.) [12] 马均, 马文波, 周开达, 等. 2002. 水稻不同穗型品种穗颈节间组织与籽粒充实特性的研究[J]. 作物学报, 28(2): 215-220. (Ma J, Ma W B, Zhou K D, et al.2002. The characteristics of the tissues of the first internode and their relations to the grain-filling for the different panicle types of rice[J]. Acta Agronomica Sinica, 28(2): 215-220.) [13] 马均, 朱庆森, 马文波, 等. 2003. 重穗型水稻光合作用、物质累积与运转的研究[J]. 中国农业科学, 36(4): 375-381. (Ma J, Zhu Q S, Ma W B, et al2003. Studies on the photosynthetic characteristics and accumulation and transformation of assimilation product in heavy panicle type of rice[J]. Scientia Agriculture Sinica, 36(4): 375-381.) [14] 舒庆尧, 吴殿星, 夏英武, 等. 1998. 稻米淀粉RVA谱特征与食用品质的关系[J]. 中国农业科学, 31(3): 25-29. (Shu Q Y, Wu D X, Xia Y W, et al.1998. The relationship between the RVA spectrum characteristics of rice starch and the quality of food[J]. Scientia Agriculture Sinica, 31(3): 25-29.) [15] 隋炯明, 李欣, 严松, 等. 2005. 稻米淀粉RVA谱特征值与品质性状相关性研究[J]. 中国农业科学, 38(4): 657-663. (Sui J M, Li X, Yan S, et al.2005. Studies on the rice RVA profile characteristics and its correlation with the quality[J]. Scientia Agriculture Sinica, 38(4): 657-663.) [16] 田志喜, 严长杰, 钱前, 等. 2010. 水稻淀粉合成相关基因分子标记的建立[J]. 科学通报, 55(26): 2591-2601. (Tian Z X, Yan C J, Qian Q, et al.2010. Establishment of molecular markers for starch synthesis related genes in rice[J]. Chinese Science Bulletin, 55(26): 2591-2601.) [17] 吴殿星, 舒庆尧, 夏英武. 2002. 胚乳外观标记与RVA谱理化指标相结合辅助改良早籼稻食用品质[J]. 中国水稻科学, 16(1): 80-82. (Wu D X, Shu Q Y, Xia Y W.2002. Endosperm appearance marker and physical/chemical indicator of RVA profile combined-assisted selection for the improvement of eating quality of early Indica rice[J]. Chinese Journal of Rice Science, 16(1): 80-82.) [18] 徐群, 许红云, 魏兴华, 等. 2012. 基于SSILP、INDEL和SSR标记的杂草稻籼粳分类[J]. 中国水稻科学, 26(6): 686-692. (Xu Q, Xu H Y, Wei X H, et al.2012. SSILP INDEL and SSR markers-based indica-japonica classification for weedy rice[J]. Chinese Journal of Rice Science, 26(6): 686-692.) [19] 肖国樱, 邓晓湘, 唐俐, 等. 2001. 培矮64S/爪哇稻F1农艺性状表现和对照优势分析[J]. 植物遗传资源学报, 2(1): 26-31. (Xiao G Y, Deng X X, Tang L, et al.2001. Agronomic traits and comparative dominance analysis of Pei’ai 64S/Java F1[J]. Journal of Plant Genetic Resources, 2(1): 26-31.) [20] 肖国樱, 袁隆平, 唐俐, 等. 2005. 籼爪交和粳爪交杂种F1代性状间关系的研究[J]. 杂交水稻, 20(3): 54-59. (Xiao G Y, Yuan L P, Tang L, et al.2005. Study on the relationship between F1 traits of indica-Javanica and japonica-Javanica hybrid[J]. Hybrid Rice, 20(3): 54-59.) [21] 肖国樱, 袁隆平. 2009. 爪哇稻及其亚种间杂种优势的研究[M]. 北京: 科学出版社, pp. 102-110. (Xiao G Y, Yuan L P.2009. Study on the heterosis between the Javanica and its subspecies [M]. Science Press , BeiJing, pp. 102-106.) [22] 于萍, 袁筱萍, 徐群, 等. 2011. 中国常规稻主栽品种的遗传结构及籼粳组分变化[J]. 中国水稻科学, 25(4): 387-391. (Yu P, Yuan X P, Xu Q, et al.2011. Genetic structure and Indica/Japonica component of major inbred rice varieties in China[J]. Chinese Journal of Rice Science, 25(4): 387-391.) [23] 杨亚春, 倪大虎, 宋顺丰, 等. 2011. 不同生态地点下稻米外观品质性状的QTL定位分析[J]. 中国水稻科学, 25(1): 43-51. (Yang Y C, Ni D H, Song S F, et al.2011. Identification of QTLs for rice appearance quality traits across different ecological sites[J]. Chinese Journal of Rice Science, 25(1): 43-51.) [24] 杨博文, 向珣朝, 许顺菊, 等. 2016. 不同糯稻品种的稻米品质特性和遗传差异[J]. 分子植物育种, 14(3): 712-717. (Yang B W, Xiang X C, Xu S J, et al.2016. Quality characteristics and genetic differences of different glutinous rice varieties[J]. Molecular Plant Breeding, 14(3): 712-717) [25] 赵森, 于江辉, 周浩, 等. 2013. 应用灰色关联度分析法综合评价引进的爪哇稻资源[J]. 农业现代化研究, 34(3): 358-361. (Zhao S, Yu J H, Zhou H, et al.2013. Evaluation of agronomic traits in Javanica rice based on grey correlation degree analysis[J]. Research of Agricultural Modernization, 34(3): 358-361.) [26] 张志勇. 2008. 水稻粒型和粒重性状的主效QTL定位研究[D]. 硕士学位论文, 厦门大学, 导师: 黄育民, pp. 38-39. (Zhang Z Y.2008. Major QTL mapping of grain shape and grain weight traits in rice[D]. Thesis for M.S., Xiamen University , Supervisor: Huang Y M, pp. 38-39.) [27] Aahikari M, Sakaibara H, Lin S, et al.2005. Cytokinin oxidase regulates rice grain production[J]. Science, 309(5735): 741-745. [28] Bhattacharya K R.2009. Physicochemical basis of eating quality of rice[J]. Cereal Foods World, 54(1): 18-28. [29] Dai X J, Yang Y Z, Zhou L, et al.2012. Analysis of indica- and japonica-specific markers of Oryza sativa and their applications[J]. Plant Systematics and Evolution, 298(2): 287-296. [30] Hu Z, Lu S, Wang M, et al.2018. A Novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]. Molecular Plant, 11(5): 736-749. [31] Li M, Tang D, Wang K, et al.2011. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice[J]. Plant Biotechnol Journal, 9(9): 1002-1013. [32] Li S Y, Zhao B R, Yuan D Y, et al.2013. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression[J]. Proceedings of the National Academy of Sciences of the USA, 110(8): 3167-3172. [33] Temnkyh S, Park W D, Ayres N, et al.2000. Mapping and genome of organization microsatellite sequences in rice[J]. Theoretical and Applied Genetics, 100(5): 697-712. [34] Wendland J., Lengeler K B,Kothe E.1996. An instant preparation method for nucleic acids of filamentous fungi[J]. Fungal Genetics Reports, 43(1): 54-55. [35] Wu K S, Tankslfy S D.1993. Abundance, polymorphism and genetic mapping of microsatellites in rice[J]. Molecular Genetics and Genomics, 241(1): 225-235. [36] Yan C J, Liang G H, Chen F, et al.2003. Mapping quantitative trait loci associated with rice grain shape based on an Indica/Japonica backcross population[J]. Acta Genetica Sinica, 30(8): 711-716. [37] Yang G P, Saghai Marcof M A, Xu C G, et al.1994. Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice[J]. Molecular Genetics and Genomics, 245(2): 187-194. [38] Yu H Y, Murchie E H, González-Carranza Z H, et al.2015. Decreased photosynthesis in the erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development[J]. Journal of Experimental Botany, 66(5): 1543-1552. [39] Zhao L, Tan L, Zhu Z, et al.2015. PAY1 improves plant architecture and enhances grain yield in rice[J]. Plant Journal, 83(3): 528-536. |
|
|
|