|
|
Genome-wide Association Analysis of Maize (Zea mays) Grain Quality Related Traits Based on Four Test Cross Populations |
GUO Jin-Jie1, *, LIU Wen-Si1, *, ZHENG Yun-Xiao1, LIU Han2, ZHAO Yong-Feng1, ZHU Li-Ying, JIA Xiao-Yan1, CHEN Jing-Tang1, ** |
1 College of Agronomy, Hebei Agricultural University/Hebei Sub-center of National Maize Improvement Center/Key Laboratory for Crop Germplasm Resources of Hebei, Baoding 071000, China; 2 National Maize Improvement Center of China/State Key Laboratory of Agrobiotechnology/China Agricultural University, Beijing 100193, China |
|
|
Abstract Hybrids are used in maize (Zea mays) production.Based on natural populations, recombination inbred line (RIL), doubled haploid (DH), F2, backcrossing (BC) and other traditional loci or regions can only reflect the contemporary genetic effects of F1 indirectly.The genetic effects of F1 could be studied directly by locating the genetic loci or regions of hybrids that control the target traits.In this study, 100 maize inbred lines with rich genetic background were used as female parents, and four lines, Mo17, E28, Zheng58, and Chang7-2 were used as test parents.According to the NCⅡ experiment, 400 hybrids (100 females×4 males) were constructed.Statistical analysis and genome-wide association study (GWAS) of grain quality-related traits, protein (Pro) content, oil content , and lysine (Lys) content, in 4 test cross populations were performed.The kernel quality traits were significant differences in F1, because of the influence of 4 different genetic background test parents.The results showed that the Pro content in the test cross populations with pollens from E28 (E28s) and Chang7-2 (Chang7-2s) was significantly higher than other populations (P<0.05); the oil content in the test cross population with pollens from E28 was significantly higher than other populations (P<0.05); Lys content in the test cross population with pollens from Mo17 (Mo17s) was significantly higher than other populations (P<0.05).For Pro, Oil, and Lys, 2, 5, and 17 significantly associated SNPs were detected in Mo17s, respectively.The phenotype variation range that can be explained by a single locus was 1.99%~21.83%, 1.15%~16.83%, 1.48%~29.91%.And in populations of E28s, Chang7-2s, and Zheng58s, the correspondingly detected SNP loci associated Pro/Oil/Lys were 11/7/54, 8/8/6, and 38/79/11, respectively.The phenotype variation range that can be explained by a single locus was 1.15%~38.60%/4.01%~26.35%/0.25%~46.10%, 7.32%~34.63%/1.25%~8.08%/2.53%~18.64% and 1.07%~61.14%/1.00%~31.04%/1.02%~21.15%, respectively.The total shared SNPs detected for Pro, Oil, and Lys were 7, 2 for Pro, 4 for Oil, and 1 for Lys.The phenotype variation range that could be explained by a single locus was 0.12%~2.51%, 3.18%~11.59%, 0.25%~14.63%.These 7 SNPs were located on the Chr1, Chr4, Chr5, Chr6, Chr9, Chr10 and donated 6 candidate genes.The candidate genes were GRMZM2G143817, GRMZM2G446313, GRMZM2G146346, GRMZM2G104920, GRMZM2G083886, GRMZM2G148400, respectively.These results provided informative references for loci mining associated with maize kernel quality-related traits via QTL mapping or GWAS pathways, and also provided practical references for kernel quality improvement in maize breeding procedures.
|
Received: 13 November 2018
|
|
Corresponding Authors:
chenjingtang@126.com
|
|
|
|
[1] 白永新, 陈保国, 张润生, 等.2003.普通玉米品质育种的现状分析与综合评价[J].玉米科学, (2): 50-53. (Bai Y X, Chen B G, Zhang R S, et al.2003.The situation analysis and integrated evaluation of quality breeding in normal corn[l].Journal of Maize Sciences, (2): 50-53.) [2] 董青松, 代力强, 吴律, 等.2018.玉米子粒脂肪含量的全基因组关联分析[J].玉米科学, (2): 58-63. (Dong Q S, Dai L Q, Wu L, et al.2018.Genome-wide association analysis of fat content in maize[J].Journal of Maize Sciences, (2): 58-63.) [3] 冯建英, 温阳俊, 张瑾, 等.2016.植物关联分析方法的研究进展[J].作物学报, 42(7): 945-956. (Feng J Y, Wen Y J, Zhang J, et al.2016.Advances on methodologies for genome-wide association studies in plants[J].Acta Agronomica Sinica, 42(7): 945-956.) [4] 杜宇茜, 杨莎, 祝丽英, 等.2018.两种密度条件下玉米雄穗分枝数全基因组关联分析[J].分子植物育种, 16(18): 5970-5977. (Du Y Q, Yang S, Zhu L Y, et al.2018.Genome-wide association analysis of tassel branch number under high and low plant densities in maize (Zea mays L.)[J].Molecular Plant Breeding, 16(18): 5970-5977.) [5] 关红辉, 刘文斯, 郭晋杰, 等.2018.不同杂种优势群玉米茎秆纤维品质及配合力分析[J].植物遗传资源学报, (5): 925-936. (Guan H H, Liu W S, Guo J J, et al.2018.Analysis of stalk fiber quality and combining ability in different maize heterotic groups[J].Journal of Plant Genetic Resources, (5): 925-936.) [6] 姜敏, 刘祥久, 刘静, 等.2004.不同优势群玉米自交系的组配模式[J].辽宁农业科学, (5): 22-24. (Jiang M, Liu X J, Liu J, et al.2004.The combination model of different inbred lines of maize inbred lines[J].Liaoning Agricultural Sciences, (5): 22-24) [7] 赖国荣, 张静, 刘函, 等.2017.基于GBS构建玉米高密度遗传图谱及营养品质性状QTL定位[J].农业生物技术学报, 25(9): 1400-1410. (Lai G R, Zhang J, Liu H, et al.2017.Construction of high density genetic map via GBS technology and QTL mapping for nutritional quality traits in maize (Zea mays)[J].Journal of Agricultural Biotechnology, 25(9): 1400-1410.) [8] 赖国荣.2017.基于GBS的玉米基因型分析及高密度遗传图谱构建[D].硕士学位论文, 河北农业大学, 导师: 陈景堂.pp.16-40. (Lai G R.2017.Genotype analysis using GBS technology and high density genetic map construction in maize[D].Thesis for M.S., Hebei Agricultural University, Supervisor: Chen J T, pp.16-40.) [9] 李福军.2018.玉米品质育种研究[J].河南农业, (17): 26-27. (Li F Y.2018.Study on Maize quality breeding[J].Henan Nongye, (17): 26-27.) [10] 李来玲, 李凤海, 史振声, 等.2014.玉米自交系昌7-2同型系配合力分析及应用评价[J].玉米科学, 22(6): 16-20. (Li L L, Li F H, Shi Z S, et al.2014.Combining ability and applied evaluation of Chang7-2 corn inbred lines and the same type[J].Journal of Maize Sciences, 22(6): 16-20.) [11] 刘志斋, 吴迅, 刘海利, 等.2012.基于40个核心SSR标记揭示的820份中国玉米重要自交系的遗传多样性与群体结构[J].中国农业科学,45(11): 2107-2138. (Liu Z Z, Wu X, Liu H L, et al.2012.Genetic diversity and population structure of important Chinese maize inbred lines revealed by 40 core simple sequence repeats (SSRs)[J].Scientia Agricultura Sinica, 45(11): 2107-2138.) [12] 刘宗华, 刘义宝, 李浩川, 等.2010.玉米籽粒赖氨酸含量的配合力效应及杂种优势分析[J].东北农业大学学报, 41(4): 1-6. (Liu Z H, Liu Y B, Li H C, et al.2010.Analysis of combining ability and heterosis on lysine content in maize kernels over environments[J].Journal of Northeast Agricultural University, 41(4): 1-6.) [13] 鲁宝良, 赵文媛, 刘日尊, 等.2004.Mo17衍生系组配杂交种对我国玉米生产的影响和贡献[J].玉米科学, (S1): 127-128. (Lu B L, Zhao W Y, Liu R Z, et al.2004.The influence and contribution of the hybrids crossed by Mo17 deriving self inbred lines to the production of China[J].Journal of Maize Sciences, (S1): 127-128.) [14] 石武良, 张蜀秋.2004.高等植物体内酪氨酸蛋白磷酸酶及其功能[J].植物生理学报, 40(4): 495-499. (Shi W L, Zhang S Q.2004.Protein tyrosine phosphatases and its function in higher plants[J].Plant Physiology Journal, 40(4): 495-499.) [15] 王延召.2007.玉米籽粒品质性状QTL定位及其遗传相关研究[D].博士学位论文, 河南农业大学, 导师: 李玉玲.pp.23-29. (Wang Y Z.2007.QTL mapping for kernel nutritional quality characters and their genetic relationship in maize[D].Thesis for M.S., Henan Agriculture University, Supervisor: Li Y L.pp.23-29.) [16] 杨书成, 杨振兴, 宋景楠.2011.“十一五”我国普通玉米品质现状与分析[J].农业科技通讯, (8): 5-7. (Yang S C, Yang Z X, Song J N, et al.2001.The present situation and analysis of the quality of common maize in China during the eleventh five-year plan[J].Bulletin of Agricultural Science and Technology, (08): 5-7) [17] 王晖.2017.玉米全基因组关联分析多杂种群体的构建及其杂种优势和配合力的遗传分析[D].博士学位论文, 中国农业科学院, 导师: 徐云碧, pp.16-18. (Wang H.2017.Development of a maize multiple-hybrid population for genome-wide association studies and geneticanalysis of heterosis and combining ability[D].Thesis for M.S., Chinese Academy of Agricultural Sciences, Supervisor: Xu Y B, pp.16-18.) [18] 张发林.2001.玉米优良自交系郑58的育成和应用[J].作物杂志, (4): 21. (Zhang F L.2001.Breeding and application of maize excellent inbred line Zheng 58[J].Crops, (4): 21.) [19] 张静.2016.玉米籽粒容重及相关性状QTL定位[D].硕士学位论文, 河北农业大学, 导师: 陈景堂, pp.53-54. (Zhang J.2016.QTL mapping of kernel test weight and its related traits of maize[D].Thesis for M.S., Hebei Agricultural University, Supervisor: Chen J T, pp.53-54.) [20] 张淑贞, 刘志增, 李丁, 等.2008.玉米DH群体籽粒品质性状的QTL分析[J].河北农业大学学报,(03): 1-5. (Zhang S Z, Liu Z Z, Li D, et al.2008.Analysis of quantitative trait loci for grain quality of maize doubled haploid population[J].Journal Publishing Department of Agricultural University of Hebei, (03): 1-5. [21] Abe H, Urao T, Ito T, et al.2003.Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J].The Plant Cell, 15(1): 63-78. [22] George D, Mallery P.2013.IBM SPSS Statistics 21 Step by Step: A Simple Guide and Reference[M].Pearson, pp.93-146. [23] Goldman I L, Rocheford T R, Dudley J W.1993.Quantitative trait loci influencing protein and starch concentration in the illinois long term selection maize strains[J].Theoretical and Applied Genetics, 87(1-2): 217-224. [24] Henderson C R.1975.Best linear unbiased estimation and prediction under a selection model[J].Biometrics, 31(2): 423-447. [25] Liu N, Xue Y, Guo Z, et al.2016a.Genome-wide association study identifies candidate genes for starch content regulation in maize kernels[J].Frontiers in Plant Science, 7(e28334): 1046. [26] Liu Y, Xie S, Yu J.2016b.Genome-wide analysis of the lysine biosynthesis pathway network during maize seed development[J].PLoS One, 11(2): e0148287. [27] Maier A, Schrader A, Kokkelink L, et al.2013.Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis[J].Plant Journal, 74(4): 638-651. [28] Melissa D.Lehti-Shiu, Zou C, Kousuke Hanada, et al.2009.Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes[J].Plant Physiology, 150(1): 12-26. [29] Murray M G, Thompson W F.1980.Rapid isolation of high molecular weight plant DNA[J].Nucleic Acids Re search, 8: 4321-4325. [30] Nodzon L A, Xu W H, Wang Y, et al.2010.The ubiquitin ligase XBAT32 regulates lateral root development in Arabidopsis[J].Plant Journal, 40(6): 996-1006. [31] Oda Yukako, Kaufman Randal J, Nagata Kazuhiro, et al.2006.Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation[J].The Journal of Cell Biology, 172(3): 383-393. [32] Riederer M, Schreiber L.2001.Protecting against water loss: Analysis of the barrier properties of plant cuticles[J].Journal of Experimental Botany, 52(363): 2023-2032. [33] Shin Han Shiu, Anthony B.Bleecker.2003.Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis[J].Plant Physiology, 132(2): 530-543. [34] Thomas B R, Romero G O, Nevins D J, et al.2000.New perspectives on the endo-beta-glucanases of glycosyl hydrolase family 17[J].International Journal of Biological Macromolecules, 27(2): 139-144. [35] Wassom J J, Wong J C, Martinez E, et al.2008.QTL associated with maize kernel oil, protein, and starch concentrations; kernel mass; and grain yield in illinois high oil×B73 backcross-derived lines[J].Crop Science, 48(1): 243-252. [36] Wang H, Xu C, Liu X, et al.2017.Development of a multiple-hybrid population for genome-wide association studies: Theoretical consideration and genetic mapping of flowering traits in maize[J].Scientific Reports, 7: 40239. [37] Yang Z, Li X, Zhang N, et al.2016.Detection of quantitative trait loci for kernel oil and protein concentration in a B73 and Zheng58 maize cross[J].Genetics and Molecular Research, 15(3): gmr.15038951 [38] Zhang Z W.2010.Mixed linear model approach adapted for genome-wide association studies[J].Nature Genetics,42(4): 355-360. [39] Zhang Z H, Liu Z, Hu Y, et al.2014.QTL analysis of Kernel-related traits in maize using an immortalized F2 population[J].PLoS One, 9(2): e89645. [40] Zhang Z W, Ersoz Elhan, Lai C Q, et al.2010.Mixed linear model approach adapted for genome-wide association studies[J].Nature Genetics, 4(4): 355-360. |
|
|
|