|
|
Reference Gene Screening for Real-time Quantitative PCR in Red Pear (Pyrus pyrifolia) |
ZHANG Xue1*, WANG Li1, QU Fei2, YANG Sheng-Jun3 |
1 Fruit Science Institute, Guizhou Academy of Agriculture Sciences, Guiyang 550006, China; 2 College of Agriculture, Guizhou University, Guiyang 550025, China; 3 Horticulture Institute, Guizhou Academy of Agriculture Sciences, Guiyang 550006, China |
|
|
Abstract Synthesis and accumulation of cyanine nucleoside in Red pear (Pyrus pyrifolia) peel are key factors influencing red pear fruit coloring and biosynthesis regulated by enzymatic reaction genes, screening of stable and reliable reference genes has important significance to research the key genes and their regulatory mechanism in red pear fruit coloring. In order to select reference genes for qRT-PCR analysis in different growth period (young fruit period,slow growth period, fast growth period, mature period) and different shading conditions (natural light, partial shading, complete shading) in different varieties (Zaobaimi, Zhongshu32, Yunhongli No.1) of red pear fruit, 6 common house-keeping genes were chosen as candidate for internal gene which included β-actin (ACT), 18S ribosomal RNA (18S rRNA), glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH), histone (His), elongation factor 1α (EF-1α), and α-tubulin (TUB). The qRT-PCR amplification efficiency, the stability parameters and the relative expression in different samples of internal reference genes were analyzed. The BIO-RAD CFX Manager v2.0 software was used to analyze and compare the stability parameter index such as cycle threshold (Ct), average expression coefficient (M) and variation coefficient (CV). The results showed different expression stability in different candidate genes, and EF-1α and His showed stable expression trend in different samples from different varieties, growth stages, and processing conditions. Analysis of relative expression of reference genes in different samples showed that the expression of EF-1α and His in different samples were relatively stable. As a result, EF-1α and His could be used as reference gene for qRT-PCR analysis in red pear peel tissues which might standardize genetic selection for relative quantitation about coloring related gene expression analysis in red pear.
|
Received: 17 July 2018
|
|
Corresponding Authors:
*, zhangxuenl@126.com
|
|
|
|
[1] 陈杨杨, 吴潇, 谷超, 等. 2018. ‘砀山酥梨’实时荧光定量PCR内参基因的筛选[J]. 中国果树,(1): 16-22, 35. (Chen Y Y, Wu X, Gu C, et al.2018. Selection of reference genes in qRT-PCR of pear ‘Dangshansuli’[J]. China Fruit,(1): 16-22, 35.) [2] 丁锐. 2004. 国外花色素苷的研究现状与进展[J]. 汉中师范学院学报, 22(2): 73-78. (Ding R.2004. The foreign research status and progress of anthocyanin[J]. Journal of Hanzhong Teachers College, 22(2): 73-78.) [3] 古丽娜尔·夏依马尔旦. 2007. 和田玫瑰花红色素的提取及性质研究[J]. 新疆师范大学学报, 26(2): 84-88. (Gulnar Xiayimardan.2007. Refinement of the pigment of hetian rose andstudy of its nature[J]. Journal of Xinjiang Normal University (Natural Sciences Edition), 26(2): 84-88.) [4] 洪阳, 尹俊梅, 黄少华, 等. 2015. 红掌细菌性叶疫病胁迫下实时荧光定量PCR (qRT-PCR)内参基因的筛选[J]. 农业生物技术学报, 23(9): 1178-1187. (Hong Y, Yin J M, Huang S H, et al.2015.Reference gene selection for quantitative real-time PCR (qRT-PCR) in Anthurium (Anthurium andraeanum Linden) tissues under bacterial blight stress[J]. Journal of Agricultural Biotechnology, 23(9): 1178-1187.) [5] 候夫云, 王庆美, 李爱贤, 等. 2009. 植物花青素合成酶的研究进展[J]. 中国农学通报, 25(21): 188-190. (Hou F Y, Wang Q M, Li A X, et al.2009. Study progress on anthocyanidin synthase of plants[J]. Chinese Agricultural Science Bulletin, 25(21): 188-190.) [6] 侯维海, 孙鹏, 陈全家, 等. 2011. 地黄实时定量PCR内参基因的筛选[J]. 中国农学通报, 27(17): 76-82. (Hou W H, Sun P, Chen Q J, et al.2011. Selection of the Reference genes for gene expression studies in Rehmannia glutinosaby real-time quantitative PCR[J]. Chinese Agricultural Science Bulletin, 27(17): 76-82.) [7] 胡瑞波, 范成明, 傅永福. 2009. 植物实时荧光定量PCR内参基因的选择[J]. 中国农业科技导报, 11(6): 30-36. (Hu R B, Fan C M, Fu Y F.2009. Reference gene selection in plant real-time quantitative reverse transcription PCR (qRT-PCR)[J]. Journal of Agricultural Science and Technology, 11(6): 30-36.) [8] 刘金泊, 欧静, 姚富姣, 等. 2014. 磷化氢诱导下赤拟谷盗实时定量PCR内参基因的筛选[J]. 农业生物技术学报, 22(2): 257-264. (Liu J B, Ou J,Yao F J, et al.2014. Identification of appropriate reference genes for gene expression studies by quantitative real-time PCR in Tribolium castaneum after exposure to phosphine[J]. Journal of Agricultural Biotechnology, 22(2): 257-264.) [9] 李雪, 潘学军, 张文娥, 等. 2017. 核桃内参基因实时荧光定量PCR表达稳定性评价[J]. 植物生理学报, 53(9): 1795-1802. (Li X, Pan X J, Zhang W E, et al.Evaluation of real-time PCR expression stability of internal reference gene in walnut[J]. Plant Physiology Journal, 53(9): 1795-1802.) [10] 卢钰, 董现义, 杜景平, 等. 2004. 花色苷研究进展[J]. 山东农业大学学报, 35(2): 315-320. (Lu Y, Dong X Y, Du J P, et al.2004. Research progress on anthocyanins[J]. Journal of Shangdong Agricultural University (Natural Science), 35(2): 315-320.) [11] 王梨寰, 潘永娟, 杨莉, 等. 2013. ‘琯溪蜜柚’荧光定量PCR内参基因的筛选[J]. 果树学报, 30(1): 48-54. (Wang L H, Pan Y J, Yang L, et al.2013. Validation of internal reference genes for qRT-PCR normalization in ‘Guanxi Sweet Pummelo’(Citrus grandis)[J]. Journal of Fruit Science, 30(1): 48-54.) [12] 王彦杰, 董丽, 张超, 等. 2012. 牡丹实时定量PCR分析中内参基因的选择[J]. 农业生物技术学报, 20(5): 521-528. (Wang Y J, Dong L, Zhang C, et al.2012. Reference gene selection for real-time quantitative PCR normalization in tree peony (Paeonia suffruticosa Andr).[J]. Journal of Agricultural Biotechnology, 20(5): 521-528.) [13] 魏毅东, 陈玉, 郭海萍, 等. 2013. 水稻缺素胁迫下实时荧光定量RT-PCR的内参基因的选择[J]. 农业生物技术学报, 21(11): 1302-1312. (Wei Y D,Chen Y, Guo H P, et al.2013. Selection of reference genes for real-time quantitative RT-PCR in rice (Oryza sativa L. ssp. japonica) under nutrient deficiency[J]. Journal of Agricultural Biotechnology, 21(11): 1302-1312.) [14] 徐丽华, 刘春雷, 常玉梅, 等. 2011. 双标准曲线相对定量PCR试验原理与方法[J]. 生物技术通报, (01): 70-75. (Xu L H, Liu C L, Chang Y M, et al. 2011. Theory and method of double-standard curves method of relative quantification PCR[J]. Biotechnology Bulletin, (01): 70-75.) [15] 尹冬梅, 赵振宇, 郭凤根, 等. 2017. 岩白菜实时荧光定量PCR分析的内参基因的筛选[J]. 基因组学与应用生物学, 36(10): 4256-4262. (Ying D M, Zhao Z Y, Guo F G, et al.2017. Screening of reference genes for real-time quantitative PCR in Bergenia purpurascens[J]. Genomics and Applied Biology, 36(10): 4256-4262.) [16] 袁伟, 万红建, 阳悦俭. 2012. 植物实时荧光定量PCR内参基因的特点及选择[J]. 植物学报, 47(4): 427-436. (Yuan W, Wan H J, Yang Y J.2012. Characterization and selection of reference gene in plant real-time quantitative reverse transcription PCR (qRT-PCR)[J]. Chinese Bulletin of Botany, 47(4): 427-436.) [17] 查倩, 奚晓军, 蒋爱丽, 等. 2016. 葡萄实时定量PCR中稳定内参基因的筛选[J]. 果树学报, 33(3): 268-274. (Zha Q, Xi X J, Jiang A L, et al.2016. Identification of the appropriate reference gene through using a realtime quantitative PCR in grapes[J]. Journal of Fruit Science, 33(3): 268-274.) [18] 周兰, 张利义, 张彩霞, 等. 2012. 苹果实时荧光定量PCR分析中内参基因的筛选[J]. 果树学报, 29(6): 965-970. (Zhou L,Zhang L Y, Zhang C X, et al.Screening of reference genes for real-time fluorescence quantitative PCR in apple(Malus domestica)[J]. Journal of Fruit Scrence, 29(6): 965-970.) [19] Argyropoulos D, Psallida C, Spyropoulos C G.2006. Generic normalization method for real-time PCR. Application for the analysis of the mannanase gene expressed in germinating tomato seed[J]. The FEBS Journal, 273(4): 770-777. [20] Bustin S A.2002. Quantification of mRNA using real-time reverse transcription PCR RT-PCR: Trends and problems[J]. Journal of Molecular Endocrinol, 29(1): 23-29. [21] Chen Y Q, Li X Y, Wang D Q, et al.2015. Identification and testing of reference genes for gene expression analysis in pollen of Pyrus bretschneideri[J]. Scientia Horticulturae, 190(16): 43-56. [22] Freeman W M, Walker S J, Vrana K E.1999. Quantitative RT-PCR: Pitfalls and potential[J]. BioTechniques, 26(1): 112-122, 124-125. [23] David W.2000. Regulation of flower pigmentation and growth: Multiplesignaling pathways control anthocyanin synthesis in expanding petals[J]. Physiologia Plantarum, 110(2): 152-157. [24] Imai T, Ubi B E, Saito T, et al.2014. Evaluation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in Pyrus pyrifolia using different tissue samples and seasonal conditions[J]. PLoS One, 9(1): e86492. [25] Kim B R, Nam H Y, Kim S U, et al.2003. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice[J]. Biotechnology Letters, 25(21): 1869-1872. [26] Laurent G, Mélanie M, Stéphanie G, et al.2008. The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcriptionpolymerase chain reaction (RT-PCR) analysis in plants[J]. Plant Biotechnology Journal, 6(6): 609-618. [27] Suzuki T, Higgins P J, Crawford D.2000. Control selection for RNA quantitation[J]. Biotechniques, 29(2): 332-337. [28] Thellin O, Zorzi W, Lakaye B, et al.1999. Housekeeping genes as internal standards: Use and limits[J]. Jouranl of Biotechnolgy, 75(2-3): 291-295. [29] Xu Y Y, Li H, Li X G, et al.2015. Systematic selection and validation of appropriate reference genes for gene expression studies by quantitative real-time PCR in pear[J]. Acta Physiologiae Plantarum, 37(2): 1-16. |
|
|
|