|
|
Mapping QTL for Grain Quality Traits in Maize (Zea mays) Under Multi-Environments |
|
|
Abstract Mining the quantitative trait loci (QTL) related to the maize (Zea mays) grain quality traits can provide the theoretical basis for molecular breeding. In this study, the population containing 150 recombinant inbred lines ( RILs) derived from Xu178×K12 were evaluated for the content of the protein, starch and oil for 3 years under 7 different environments. The best linear unbiased prediction method (BULP) was used to estimate the BLUP value of each trait with the phenotypic value. Composite interval mapping method (CIM) of WinQTLcart 2.5 were using to scanning the QTLs carried out with logarithm viscosity odds (LOD) is 2.5 for 3 quality traits. In total of 20 QTLs were identified distributed chromosome 1, 2, 4, 5, 6 and 10 according to the QTLs analysis. Nine QTLs for protein were identified, six QTLs for starch were identified and 5 QTLs for oil were identified. The QTLs explained 2.3%~15.7% of phenotypic variation. And the LOD values ranged from 2.52 to 6.50. The QTL at Bin4.07/4.08 was detected under 4 environments and BLUP value. And QTL in Bin6.05/6.06 was detected under 4 environments. As well as 2 QTLs located in Bin5.07 were detected in 3 environments. In this study, the QTL mapped in the marker intervals umc1194~umc2384 on chromosome could detected in multiple environments. The QTL explained 10.3%~15.7% of phenotypic variation. This stable QTL was considered to be major QTL for maize protein content, which was expected that this QTL could be applied on the genetic improvement of maize grain quality. The experiment of QTL analysis associated quality traits of maize grain provides basic data for molecular breeding of maize.
|
Received: 22 March 2018
Published: 20 November 2018
|
|
|
|
陈秀华, 于丽娟, 罗黎明, 等. 2016. 玉米分子标记辅助育种及标记开发研究进展[J]. 中国农业科技导报, 18(01): 26-31. (Chen X H, Yu L J, Luo L M, et al. 2016. Research progress on maize molecular marker-assisted breeding and marker development[J]. Journal of Agricultural Science and Technology, 18(01): 26-31.)胡小平, 郭晓慧. 2010. 2020年中国粮食需求结构分析及预测—基于营养标准的视角[J].中国农村经济, (6): 4-15. (Hu X P, Guo X H. 2016. Analysis and prediction of the structure of China's grain demand based on the perspective of nutritional standards[J]. Chinese Rural Economy, (6): 4-15.) 何坤辉, 常立国, 崔婷婷, 等. 2016. 多环境下玉米株高和穗位高的QTL定位[J]. 中国农业科学, 49(8): 1443-1452. (He K H, Chang L G, Cui T T, et al. 2016. Mapping QTL for plant height and ear height in maize under multi-environments[J]. Scientia Agricultura Sinica, 49(8): 1443-1452.) 赖国荣, 张静, 刘函, 等. 2017. 基于GBS构建玉米高密度遗传图谱及营养品质性状QTL定位[J]. 农业生物技术学报, 25(09): 1400-1410. (Lai G R, Zhang J, Liu H, et al. 2017. Construction of high density genetic map via GBS technology and QTL mapping for nutritional quality traits in maize (Zea mays.L.)[J]. Journal of Agricultural Biotechnology, 25(09): 1400-1410.)兰天茹, 崔婷婷, 何坤辉, 等. 2017. 不同氮水平下玉米子粒品质性状的QTL定位[J]. 玉米科学, 25(02): 6-11. (Lan T R, Cui T T, He K H, et al. 2017. QTL Mapping of kernel quality traits under different nitrogen treatments in maize[J]. Journal of Maize Sciences, 25(02): 6-11.)李学慧, 申顺先, 李玉玲, 等. 2011. 利用种子性状QTL定位高油玉米蛋白质含量QTL[J]. 作物杂志, (4): 40-42. (Li X H, Shen S X, Li Y L, et al. 2011. QTL Analysis of protein content in high-oil maize using seed trait QTL[J]. Crops, (4): 40-42.)李学慧, 申顺先, 李玉玲, 等. 2012. 利用种子性状QTL定位高油玉米淀粉含量QTL[J]. 华北农学报, 27(2): 97-99. (Li X H, Shen S X, Li Y L, et al. 2011. QTL Analysis of starch content in high-oil maize using seed trait QTL[J]. Acta Agriculturae Boreali-Sinica, 27(2): 97-99.)石明亮, 薛林, 胡加如, 等. 2011. 玉米和特用玉米的营养保健作用及加工利用途径[J]. 中国食物与营养, 17(02): 66-71. (Shi M L, Xue L, Hu J R, et al. 2011. Nutrition and health function of maize and appropriative maize and its process[J]. Food and Nutrition in China, 17(02): 66-71.) 孙晓梅, 杨秀艳. 2011. 林木育种值预测方法的应用与分析[J]. 北京林业大学学报, 33(2): 65-71. (Sun X M, Yang X Y. 2011. Application and analysis of methods for breeding value prediction in forest trees[J]. Journal of Beijing Forestry University, 33(2): 65-71.)孙海燕, 蔡一林, 王久光, 等. 2011. 玉米主要营养品质性状的QTL定位[J]. 农业生物技术学报, 19(4): 616-623. (Sun H Y, Cai Y L, Wang J G, et al. 2011. QTL mapping for nutritional quality traits in maize[J]. Journal of Agricultural Biotechnology, 19(4): 616-623.)张姿丽, 蒋锋, 刘鹏飞, 等. 2013. 鲜食甜玉米籽粒蛋白质含量的QTL定位[J]. 西北农林科技大学学报(自然科学版), 41(3): 99-104. (Zhang Z L, Jiang F, Liu P F, et al. 2013. QTL mapping for grain protein content in fresh sweet corn[J]. Journal of Northwest A&F University (Natural. Science. Edition), 41(3): 99-104.)张中伟. 2009. 普通×爆裂玉米RILs构建及主要性状QTL分析[D]. 硕士学位论文. 河南农业大学, 导师: 李玉玲. pp 73-76. (Zhang Z W. 2009. Construction of normal corn × popcorn RIL population and QTL analysis for main traits[D]. Thesis of M.S. Henan Agriculture, Supervisor: Li Y L. pp 73-76.)赵丹. 2016. 玉米籽粒营养品质性状的QTL分析[D]. 硕士学位论文. 四川农业大学, 导师: 兰海. Pp 33-35. (Zhao D. 2016. QTL analysis of kernel nutritional quality traits in maize[D]. Thesis of M.S. Sichuan Agriculture University, Supervisor: Lan H. pp 33-35.) 郑德波, 杨小红, 李建生, 等. 2013. 基于SNP标记的玉米株高及穗位高QTL定位[J]. 作物学报, 39(3): 549-556. (Zheng D B, Yang X H, Li J S, et al. 2013. QTL Identification for plant height and ear height based on SNP mapping in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 39(3): 549-556.)Berke T G, Rocheford T R. 1995. Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize[J]. Crop Science, 35(6): 1542-1549.Gurganus M C, Fry J D, Nuzhdin S V, et al. 1998. Genotype-environment interaction at quantitative trait loci affecting sensory bristle number in drosophila melanogaster[J]. Genetics, 149(4): 1883-1898.Hallauer A R, Miranda F J B. 1981. Quantitative Genetics in Maize Breeding[M]. Ames: Iowa State University Press.Henderson C R. 1974. General flexibility of linear model techniques for sire evaluation[J]. Journal of Dairy Science, 57(8): 963-972.Li Y, Wang Y, Wei M, et al. 2009. QTL Identification of grain protein concentration and its genetic correlation with starch concentration and grain weight using two populations in maize (Zea mays L.) [J]. Journal of Genetics, 88(1): 61-67. Liu Y, Dong Y, Niu S, et al. 2008. QTL identification of kernel composition traits with popcorn using both F2:3, and BC2 F2 populations developed from the same cross[J]. Journal of Cereal Science, 48(3): 625-631.Mangolin C A, Cldejr S, Aaf G, et al. 2004. Mapping QTLs for kernel oil content in a tropical maize population[J]. Euphytica, 137(2): 251-259.Paterson A H, Damon S, Hewitt J D, et al. 1991. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments[J]. Genetics, 127(1): 181-97.Wang G, Wang F, Wang G, et al. 2012. Encodes a myosin XI motor protein that is required for endoplasmic reticulum motility and protein body formation in maize endosperm[J]. Plant Cell, 24(8):3447.Wang Y Z, Li J Z, Li Y L, et al. 2010. QTL detection for grain oil and starch content and their associations in two connected F2:3 populations in high-oil maize[J]. Euphytica, 174(2): 239-252. Wang Z, Liu N, Ku L, et al. 2016. Dissection of the genetic architecture for grain quality‐related traits in three RIL populations of maize (Zea mays L.) [J]. Plant Breeding, 135(1): 38-46. Wassom JJ, Wong J C, Martinez E, et al. 2008. QTL associated with maize kernel oil, protein, and starch concentrations; kernel mass; and grain yield in Illinois high Oil×B73 backcross-derived lines[J]. Crop Science, 48(1): 243-252.Yang Z, Li X, Zhang N, et al. 2016. Detection of quantitative trait loci for kernel oil and protein concentration in a B73 and Zheng58 maize cross[J]. Genetics and Molecular Research, 15(3).Yang G, Dong Y, Li Y, et al. 2013. Verification of QTL for grain starch content and its genetic correlation with oil content using two connected RIL populations in high-oil maize[J]. Public Library of science One, 8(1): e53770.Yang L, Wang W, Yang W, et al. 2013. Marker-assisted selection for pyramiding the waxy and opaque-16 genes in maize using cross and backcross schemes[J]. Molecular Breeding, 31(4): 767-775.Zhang H, Jin T, Huang Y, et al. 2015. Identification of quantitative trait loci underlying the protein, oil and starch contents of maize in multiple environments[J]. Euphytica, 205(1): 169-183.Zhang J, Lu X Q, Song X F, et al. 2008. Mapping quantitative trait loci for oil, starch, and protein concentrations in grain with high-oil maize by SSR markers[J]. Euphytica, 162(3): 335-344. |
|
|
|