|
|
Cloning and Expression Characteristics of HcWD40-1 Gene Under Salt and Drought Stress in Kenaf (Hibiscus cannabinus) |
2, 2, 2, 2, 2 |
|
|
Abstract WD-repeat protein, containing WD-40 motif, also known as WD40 repeat protein, which plays an essential regulating role during the abiotic stress response of plants. In this study, it was found that a kenaf (Hibiscus cannabinus) transcriptome unigene which was highly similar to the WD40 gene, and then designed the primers to carry out reverse transcription PCR amplification and obtained HcWD40-1(GenBank No.: KX711617) cDNA sequence by sanger sequencing. Bioinformatics analysis showed that the gene open reading frame was 1 356 bp, encoding 451 amino acids, and containing 7 typical WD40 domains. qRT-PCR analysis showed that HcWD40-1 gene was induced by salt and drought stress, and was induced by abscisic acid (ABA) and methyl jasmonate (MeJA). The results suggested that the HcWD40-1 gene was a key hub gene for ABA and MeJA signaling pathways, salt and drought stress responses. The results of the study provide basic data for the study of salt-tolerant, drought-resistant on ABA signal regulation network and MeJA signal regulation network of kenaf.
|
Received: 19 May 2017
Published: 10 December 2017
|
|
|
|
[1] Kronzucker H J, Coskun D, Schulze L M,et al. Sodium as nutrient and toxicant[J].Plant and soil, 2013,369:1-23.[2]Janz D, Polle A. Harnessing salt for woody biomass production[J]. Tree Physiology,2012,32:1-3[3] Zhang J L, Flowers T J, Wang S M, Mechanisms of sodium uptake by roots of higher plants[J].Plant and soil, 2010,326:45-60[4] R.Munns and M.Tester, Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008,vol.59,pp.651-681[5]Mishra AK,Puranik S,Prasad M.Structure and regulatory networks of WD40 protein in plants[J].J Plant Biochem Biot,2012,21(1):32-39[6]Xu Min.Structure and function of WD40 domain proteins[J].Protein and Cell,2011,2(3):202-214[7]Ramsay NA,Glover BJ. MYB-Bhlh-WD40 protein complex and the evolution of cellular diversity[J].Trends Plant Sci,2005,10(2):63-70[8]Broun.Transcriptional control of flavonoid biosynthesis:a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis[J].Current Opinion in Plant Biology,2005,8:272-279[9] 游晓慧,李威,陶启长,孙小芬,唐克轩.WD40重复蛋白家族基因Atg65030调控拟南芥种子的重量与体积[J].植物生理学报,2011,47(7):715-725[10] 李宝燕.烟草WD40蛋白TTG2对生长发育和抗病性的调控作用[M].南京:南京农业大学,2012.[11] 李辉,李德芳,陈安国等.红麻雄性不育研究进展及展望[J].作物研究,2015,29(2)206-209[12] Ji Huang,Mei-Mei Wang, Yong-Mei Bao,Shu-Jin Sun,Li-Juan Pan,Hong-Sheng Zhang.SRWD:A novel WD40 protein subfamily regulated by salt stress in rice(Oryza sativa L.) [J]. Gene 2008,424:71-79[13] 李洁.棉花GhWD40基因的克隆及功能验证[M].武汉,华中农业大学,2013[14]张春蕊,贾园园,王艳敏,王玉成.刚毛柽柳液泡膜H+-PPase基因的克隆与胁迫下的表达分析[J]. 西北植物学报,2016,36(5):0881-0887[15]郑琳琳,张慧荣,贺龙梅,王迎春.唐古特白刺质膜Na+/H+逆向转运蛋白基因的克隆与表达分析[J]. 草业学报,2013,22(4):179-186[16]裴斌,张光灿,张淑勇,吴芹,徐志强,徐萍.土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J].生态学报,2013,33(5):1386-1396[17]曹红利,岳川,周艳华,王璐,郝心愿等.茶树bZIP 转录因子基因CsbZIP1 的克隆与表达定位[J].作物学报,2014,40(9):1702-1709[18]马建辉,张戴静,高小龙,郝云,姜丽娜.乌拉尔图小麦WRKY转录因子的筛选与分析[J].作物学报,2015,41(6):900-909 [19]Asano T,Hakata M,Nakamura H,etal. Functional characterisation of OsCPK21,a calcium-dependent protein kinase that confers salt tolerance in rice[J].Plant Mol Bil,2011,75(12):179-191[20]Asano T,Hayashi N,Kobayashi M,et al.A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance[J].Plant J,2012,69(1):26-36[21]Xu D B,Chen M,Ma Y N,et al.A G-Protein βSubunit,AGB1,negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis[J].PloS One,2015,10:e0116385 [22] 李长宁,Mano J Kumar SRIVAATAVA 农倩,李杨瑞.水分胁迫下外源ABA提高甘蔗抗旱性的作用机制[J].作物学报,2010,5:863-870[23] 王允,张逸,刘灿玉,张志焕等.干旱胁迫下外源ABA对姜叶片活性氧代谢的影响[J].园艺学报,2016,43(3):587-594[24] 陈涛,王贵美,沈伟伟,李小珍,祁建民等.盐胁迫对红麻幼苗生长及抗氧化酶活性的影响[J].植物科学学报,2011,29(4):493-501 |
|
|
|