|
|
Calcium Inhibits Ochratoxin A (OTA) Induced Arabidopsis thaliana Toxicity |
Yang Jun Lv1, 2,韦露450103198306212562李丽婷120103198310162928 1, 2, 2 |
|
|
Abstract In order to enrich the toxicity and its mechanism of ochratoxin A (OTA) in plants and explore the role of calcium in OTA toxicity to plants, this research studied the effect of calcium on the toxicity induced by OTA in Arabidopsis thaliana, by the observation of morphological changes, relative leakage rate of leaves, the content of reactive oxygen species (ROS) and malondialdehyde (MDA) under treatment with exogenous Ca2+, the calcium chelator ethylenebis (oxyethylenenitrilo) tetraacetic acid (EGTA) and OTA in vitro leaves of A. thaliana. The results showed that in a certain range of concentration, under the treatment of exogenous calcium, there was no significant change in leaf morphology of A. thaliana. EGTA and OTA both led to the formation of A. thaliana leaves chlorosis and necrosis of the lesion. Ca2+ and OTA treatment together could significantly inhibit the formation of A. thaliana leaves chlorosis and necrotic lesion produced induced by OTA. EGTA treatment could aggravate those effects induced by OTA. OTA treatment increased relative leakage rate and permeability of cell membrane of A. thaliana leaves. Exogenous calcium could significantly inhibit OTA induced increase in relative leakage rate of A. thaliana leaves, 20 mmol/L Ca2+ has the strongest inhibitory effect of which the inhibition rate was 61.32%. In addition, OTA treatment brought the outbreak of ROS and the accumulation of MDA in A. thaliana leaves, and therefore caused oxidative damage. Ca2+ could effectively relieve the OTA induced A. thaliana ROS burst and reduce MDA generation; the inhibition rates were 29.7% and 71.4%, respectively. It could be concluded that OTA can induce plant toxicity in A. thaliana, calcium significantly inhibts the toxicity of OTA in A. thaliana, and plays an important role in A. thaliana's stress resistance.
|
Received: 27 May 2016
Published: 07 November 2016
|
Corresponding Authors:
韦露450103198306212562李丽婷120103198310162928
E-mail: xuwentao1111@sina.com
|
|
|
|
[1]高洪波, 陈贵林.钙调素拮抗剂与Ca2+对茄子幼苗抗冷性的影响[J].园艺学报, 2002, 29(3):243-246
[2]李天来, 张亢亢, 余朝阁, 等.外源钙和茉莉酸甲酯诱导番茄植株亢灰霉病研究[J].西北植物学报, 2012, 32(3):505-510
[3]廖汝玉, 尹兰香, 金光, 等.不同浓度钙处理对枇杷小苗叶片细胞超微结构及叶绿体色素含量的影响[J].福建农业学报, 2008, 23(3):302-305
[4]彭晓丽.赭曲霉毒素 A 对拟南芥的毒理机制研究[J].中国农业大学博士论文, 2010, :100-106
[5]斯琴巴特尔, 吴红英.盐胁迫对玉米种子萌发及幼苗生长的影响[J].干旱区资源与环境, 2000, 14(4):77-81
[6]汪洪, 周卫, 林葆.钙对镉胁迫下玉米生长及生理特性的影响[J].植物营养与肥料学报, 2001, 7(1):78-87
[7]王龑, 许文涛, 彭晓丽, 等.赭曲霉毒素 A(OTA)对拟南芥植物毒性的初步研究[J].农业生物技术学报, 2010, 18(6):1079-1083
[8]王龑.赭曲霉毒素A对拟南芥毒性作用机理的蛋白质组学研究[J].中国农业大学博士论文, 2013, :-
[9]赵维薇, 许文涛, 彭晓丽, 等.水杨酸在赭曲霉毒素A 诱导的拟南芥毒性中的作用[J].农业生物技术学报, 2012, 20(2):146-151
[10]赵险飞, 周晓阳.盐胁迫和干旱胁迫条件下细胞内Ca 2+ 水平的变化[J].河北林果研究, 2005, 20(3):228-233
[11]张宗申, 利容千, 王建波.外源Ca2+、La3+和EGTA处理对辣椒叶片热激反应的影响[J].武汉大学学报, 2000, 46(2):253-256
[12]Ali R, Mittelstaedt R A, Shaddock J G, et al.Comparative analysis of micronuclei and DNA damage induced by ochratoxin A in two mammalian cell lines[J].Mutation Research, 2011, 723( 1):58-64
[13]Gautier J C, Richoz J, Welti D H, et al.Metabolism of ochratoxin A: absence of formation of genotoxic derivatives by human and rat enzymes[J].Chemical research in toxicology, 2001, 14(1):34-45
[14]Hao J R, Peng X L, Xu W T, et al.Role of Ethylene in ochratoxin A(OTA) toxicity to Arabidopsis thaliana[J].Journal of Agricultural Biotechnology, 2013, 21(12):1413-1419
[15]Heather K, Anthony J. T, Marc R. K.Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation[J].The Plant Cell, 1996, 8(3):489-503
[16]Liu T, Staden J V, Cress W A.Salinity induced nuclear and DNA degradation in meristematic cells of soybean (Glycine max L.) roots[J].Plant Growth Regul, 2000, 30(1):49-54
[17]Mahalingam R, Jambunathan N, Gunjan S K, et al.Analysis of oxidative signaling induced by ozone in Arabidopsis thaliana[J].Plant Cell Environment, 2006, 29(7):1357-1371
[18]Marc R. K, Steven M. S, Anthony J. T.Wind-induced plant motion immediately increases cytosolic calcium[J].Plant Biology, 1988, 89(11):4967-4971
[19]Pandey G K, Cheong Y H, Kim K N, et al.The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis[J].Plant Cell, 2004, 16(7):1912-1924
[20]Park K Y, Jung J Y, Park J, et al.A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells[J].Plant Physiol, 2003, 132(1):92-98
[21]Rahimtula A D, Bereziat J C, Bussacchinni-Griot V, et al.Lipid peroxidation as a possible cause of ochratoxin A toxicity[J].Biochemical Pharmacology, 1988, 37(23):4469-4477
[22]Ringot, D, Chango, A, Schneider, Y J, et al.Toxicokinetics and toxicodynamics of ochratoxin A, an update[J].Chemico-Biological Interactions, 2006, 159(1):18-46
[23]Romero-Puertas M C, Rodńguez-serrano M, Corpas F J, et al.Cadmium-induced subcellular accumulation of O2- and H2O2 in pea leaves[J].Plant Cell & Environment, 2004, 27(9):1122-1134
[24]Van der Merwe K J, Steyn P S, and Fourie L.Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh[J].Nature, 1965, 205(976):1112-1113
[25]Visconti A, Pascale M, and Centonze G.Dertermination of ochratoxin A in wine and beer by immunoaffinity column cleannup and liquid chromatographic analysis with fluorometric detection: Collaborative study[J].Journal of AOAC International, 2001, 84(6):1818-1827
[26]Wang Y, Hao J R, Zhao W W, et al.Comparative proteomics and physiological characterization of Arabidopsis thaliana seedlings in responses to ochratoxin A[J].Plant Molecular Biology, 2013, 82(4-5):321-337
[27]Wang Y, Peng X L, Xu W T,et al.Transcript and protein profiling analysis of OTA- induced cell death reveals the regulation of the toxicity response process in Arabidopsis thaliana[J].Journal of Experimental Botany, 2012, 63(5):2171-2187
[28]White P J, Broadley P J.Calcium in plant[J].Annals of Botany, 2003, 92(4):487-511
|
|
|
|