|
Abstract Pepper (Capsicum) is an economically important genus of the Solanaceae family that also includes tomato and potato. Pepper has the same chromosome number as tomato and potato, but there is a huge difference in genome size between pepper and tomato/potato. Pepper genome expansion occurred after the pepper-tomato divergence (~36 Mya), which made it perfect model for genome evolution studies. Developments on research technology have led to the achievements of exciting investigation results in this field in the last decade. Pepper genome expansion, the types of chromosome rearrangements, whole genome duplication, fruit development biology, evolution of genes involved in capsaicin synthesis, and molecular footprints of artificial selection have been elucidated successively. In this paper, we review the research advances in genomics of pepper and make some suggestion for future investigation and provide a resource for genetic improvement and breeding programs.
|
Received: 08 October 2014
Published: 13 May 2015
|
|
|
|
[1] Hunziker AT. Genera Solanacearum: the genera of Solanaceae illustrated, arranged according to a new system [M]. A.R.G. Gantner, 2001.[2] Mongkolporn O, Taylor PW. Capsicum [M]. Wild Crop Relatives: Genomic and Breeding Resources. Springer. 2011: 43-57.[3] Andrews J. Peppers: The Domesticated Capsicums [M]. University of Texas Press, 1995.[4] Paran I, Ben-Chaim A, Kang B-C, et al. Capsicums [M]//KOLE C. Vegetables. Springer Berlin Heidelberg. 2007: 209-226.[5] Pickersgill B. Domestication of plants in the Americas: insights from Mendelian and molecular genetics [J]. Annals of botany, 2007, 100(5): 925-940.[6] Pickersgill B. The archaeological record of chili peppers (Capsicum spp.) and the sequence of plant domestication in Peru [J]. American Antiquity, 1969: 54-61.[7] Perry L, Dickau R, Zarrillo S, et al. Starch Fossils and the Domestication and Dispersal of Chili Peppers (Capsicum spp. L.) in the Americas [J]. Science, 2007, 315(5814): 986-988.[8] Bosland PW. Capsicums: Innovative uses of an ancient crop [M]. Arlington, VA: ASHS Press, 1996.[9] 蒋慕东, 王思明. 辣椒在中国的传播及其影响 [J]. 中国农史, 2005, (02): 17-27.[10] Khan FA, Mahmood T, Ali M, et al. Pharmacological importance of an ethnobotanical plant: Capsicum annuum L [J]. Natural product research, 2014.[11] Reilly CA, Crouc DJ, Yost GS, et al. Determination of capsaicin, dihydrocapsaicin, and nonivamide in self-defense weapons by liquid chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry [J]. Journal of chromatography A, 2001, 912(2): 259-267.[12] Pickersgill B. Chromosomes and evolution in Capsicum [J]. Capsicum 77, 1977.[13] Pickersgill B, Heiser C, McNeill J. Numerical taxonomic studies on variation and domestication in some species of Capsicum; proceedings of the Linnean Society symposium series, F, 1979 [C].[14] Tong N, Bosland P. Meiotic chromosome study of Capsicum lanceolatum, another 13 chromosome species [J]. Capsicum and Eggplant Newsletter, 1997, 16: 42-43.[15] Onus AN, Pickersgill B. Unilateral incompatibility in Capsicum (Solanaceae): occurrence and taxonomic distribution [J]. Annals of botany, 2004, 94(2): 289-295.[16] Scaldaferro M, Seijo J, Acosta M, et al. Genomic Characterization of the Germplasm in Peppers (Capsicum-Solanaceae) by Fluorescent in situ Kybridization [J]. RASTENIEVUDNI NAUKI, 2006, 43(4): 291.[17] Pozzobon MT, SCHIFINO‐WITTMANN MT, De Bem Bianchetti L. Chromosome numbers in wild and semidomesticated Brazilian Capsicum L.(Solanaceae) species: do x= 12 and x= 13 represent two evolutionary lines? [J]. Botanical Journal of the Linnean Society, 2006, 151(2): 259-269.[18] Park Y-K, Park K-C, Park C-H, et al. Chromosomal localization and sequence variation of 5S rRNA gene in five Capsicum species [J]. Molecules and cells, 2000, 10(1): 18-24.[19] Park Y-K, Kim B-D, Kim B-S, et al. Karyotyping of the chromosomes and physical mapping of the 5S rRNA and 18S-26S rRNA gene families in five different species in Capsicum [J]. Genes & genetic systems, 1999, 74(4): 149-157.[20] Moscone EA, Lambrou M, Ehrendorfer F. Fluorescent chromosome banding in the cultivated species ofCapsicum (Solanaceae) [J]. Pl Syst Evol, 1996, 202(1-2): 37-63.[21] Moscone EA, Lambrou M, Hunziker AT, et al. Giemsa C-banded karyotypes inCapsicum (Solanaceae) [J]. Pl Syst Evol, 1993, 186(3-4): 213-229.[22] Pickersgill B. Cytogenetics and evolution of Capsicum L [J]. Chromosome engineering in plants: genetics, breeding, evolution, part B Elsevier, Amsterdam, 1991: 139-160.[23] Bosland P, Zewdie Y. Diversity and characterization of capsaicinoids and their application to chemotaxonomy of Capsicum [J]. Solanaceae V: Advances in Taxonomy and Utilisation, 2001: 179-185.[24] Ballard RE, McClure JW, Eshbaugh WH, et al. A chemosystematic study of selected taxa of Capsicum [J]. American journal of botany, 1970: 225-233.[25] Loaiza-Figueroa F, Ritland K, Cancino JAL, et al. Patterns of genetic variation of the genusCapsicum (Solanaceae) in Mexico [J]. Pl Syst Evol, 1989, 165(3-4): 159-188.[26] McLeod MJ, Guttman SI, Eshbaugh WH, et al. An electrophoretic study of evolution in Capsicum (Solanaceae) [J]. Evolution; international journal of organic evolution, 1983: 562-574.[27] Sun Y-L, Choi I-L, Lee Y-B, et al. Molecular diversity and phylogentic analysis of Capsicum annuum varieties using the nrDNA ITS region [J]. Scientia Horticulturae, 2014, 165(0): 336-343.[28] Nimmakayala P, Abburi VL, Abburi L, et al. Linkage disequilibrium and population-structure analysis among Capsicum annuum L. cultivars for use in association mapping [J]. Molecular genetics and genomics : MGG, 2014.[29] Rai VP, Kumar R, Kumar S, et al. Genetic diversity in Capsicum germplasm based on microsatellite and random amplified microsatellite polymorphism markers [J]. Physiol Mol Biol Plants, 2013, 19(4): 575-586.[30] Votava EJ, Baral JB, Bosland PW. Genetic diversity of chile (Capsicum annuum var. annuum L.) landraces from northern New Mexico, Colorado, and Mexico [J]. Econ Bot, 2005, 59(1): 8-17.[31] Walsh BM, Hoot SB. Phylogenetic relationships of Capsicum (Solanaceae) using DNA sequences from two noncoding regions: the chloroplast atpB‐rbcL spacer region and nuclear waxy introns [J]. International Journal of Plant Sciences, 2001, 162(6): 1409-1418.[32] Moscone EA, Scaldaferro MA, Grabiele M, et al. The evolution of chili peppers (Capsicum - Solanaceae): a cytogenetic perspective [J]. Proceedings of the VIth International Solanaceae Conference, Solanaceae VI: Genomics Meets Biodiversity, 2007, (745): 137-169.[33] Caroline D-C, Véronique L, Anne-Marie S-D, et al. Capsicum [M]. Genetic Resources, Chromosome Engineering, and Crop Improvement. CRC Press. 2006: 185-244.[34] Moscone EA, Baranyi M, Ebert I, et al. Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and Feulgen densitometry [J]. Ann Bot, 2003, 92(1): 21-29.[35] Park M, Jo S, Kwon J-K, et al. Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements [J]. BMC genomics, 2011, 12(1): 85.[36] Park M, Park J, Kim S, et al. Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type long terminal repeat retrotransposons and their derivatives [J]. The Plant Journal, 2012, 69(6): 1018-1029.[37] Kim H, Han J-H, Kwon J-K, et al. Fine mapping of pepper trichome locus 1 controlling trichome formation in Capsicum annuum L. CM334 [J]. Theoretical and Applied Genetics, 2010, 120(6): 1099-1106.[38] Qin C, Yu C, Shen Y, et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization [J]. Proceedings of the National Academy of Sciences, 2014: 201400975.[39] Consortium TTG. The tomato genome sequence provides insights into fleshy fruit evolution [J]. Nature, 2012, 485(7400): 635-641.[40] Potato Genome Sequencing Consortium, Xu X, Pan S, et al. Genome sequence and analysis of the tuber crop potato [J]. Nature, 2011, 475(7355): 189-195.[41] Timmis JN, Ayliffe MA, Huang CY, et al. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes [J]. Nat Rev Genet, 2004, 5(2): 123-135.[42] Moscone EA, Scaldaferro MA, Grabiele M, et al. The evolution of chili peppers (Capsicum – Solanaceae): a cytogenetic perspective [J]. Acta Hortic 2007, 745: 137-170.[43] Yan G, Zhang G, Fang X, et al. Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques [J]. Nat Biotech, 2011, 29(11): 1019-1023.[44] Wu F, Eannetta N, Xu Y, et al. A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum [J]. TAG Theoretical and applied genetics Theoretische und angewandte Genetik, 2009, 118(7): 1279-1293.[45] Wicker T, Sabot F, Hua-Van A, et al. A unified classification system for eukaryotic transposable elements [J]. Nature Reviews Genetics, 2007, 8(12): 973-982.[46] Lisch D. How important are transposons for plant evolution? [J]. Nat Rev Genet, 2013, 14(1): 49-61.[47] Jia J, Zhao S, Kong X, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation [J]. Nature, 2013, 496(7443): 91-95.[48] Ling HQ, Zhao S, Liu D, et al. Draft genome of the wheat A-genome progenitor Triticum urartu [J]. Nature, 2013, 496(7443): 87-90.[49] Lefebvre V, Palloix A, Caranta C, et al. Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies [J]. Genome, 1995, 38(1): 112-121.[50] Goff SA, Ricke D, Lan T-H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) [J]. Science, 2002, 296(5565): 92-100.[51] Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica) [J]. Science, 2002, 296(5565): 79-92.[52] Wang X, Wang H, Wang J, et al. The genome of the mesopolyploid crop species Brassica rapa [J]. Nature genetics, 2011, 43(10): 1035-1039.[53] Initiative AG. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J]. Nature, 2000, 408(6814): 796.[54] Ming R, Hou S, Feng Y, et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus) [J]. Nature, 2008, 452(7190): 991-996.[55] Jaillon O, Aury JM, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla [J]. Nature, 2007, 449(7161): 463-467.[56] Guo S, Zhang J, Sun H, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions [J]. Nat Genet, 2012, advance online publication.[57] Huang S, Li R, Zhang Z, et al. The genome of the cucumber, Cucumis sativus L [J]. Nature genetics, 2009, 41(12): 1275-1281.[58] Kim S, Park M, Yeom S-I, et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species [J]. Nat Genet, 2014, 46(3): 270-278.[59] Schatz MC, Delcher AL, Salzberg SL. Assembly of large genomes using second-generation sequencing [J]. Genome Research, 2010, 20(9): 1165-1173.[60] Li R, Fan W, Tian G, et al. The sequence and de novo assembly of the giant panda genome [J]. Nature, 2009, 463(7279): 311-317.[61] Schatz MC, Witkowski J, McCombie WR. Current challenges in de novo plant genome sequencing and assembly [J]. Genome biology, 2012, 13(4): 243.[62] Birney E. Assemblies: the good, the bad, the ugly [J]. Nature methods, 2010, 8(1): 59-60.[63] Huang X, Feng Q, Qian Q, et al. High-throughput genotyping by whole-genome resequencing [J]. Genome Research, 2009, 19(6): 1068-1076.[64] Davey JW, Hohenlohe PA, Etter PD, et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing [J]. Nature Reviews Genetics, 2011, 12(7): 499-510.[65] Elshire RJ, Glaubitz JC, Sun Q, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species [J]. PloS one, 2011, 6(5): e19379.[66] Paran I, van der Voort JR, Lefebvre V, et al. An integrated genetic linkage map of pepper (Capsicum spp.) [J]. Molecular Breeding, 2004, 13(3): 251-261.[67] Lu FH, Kwon SW, Yoon MY, et al. SNP marker integration and QTL analysis of 12 agronomic and morphological traits in F(8) RILs of pepper (Capsicum annuum L.) [J]. Molecules and cells, 2012, 34(1): 25-34.[68] Wu F, Eannetta NT, Xu Y, et al. A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum [J]. Theoretical and Applied Genetics, 2009, 118(7): 1279-1293.[69] Li L, Stoeckert CJ, Jr., Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes [J]. Genome research, 2003, 13(9): 2178-2189.[70] Thornton JW. Resurrecting ancient genes: experimental analysis of extinct molecules [J]. Nature Reviews Genetics, 2004, 5(5): 366-375.[71] Bolot S, Abrouk M, Masood-Quraishi U, et al. The ‘inner circle’ of the cereal genomes [J]. Current Opinion in Plant Biology, 2009, 12(2): 119-125.[72] Livingstone KD, Lackney VK, Blauth JR, et al. Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae [J]. Genetics, 1999, 152(3): 1183-1202.[73] Albert VA, Chang TH. Evolution of a hot genome [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5069-5070.[74] Jiao Y, Leebens-Mack J, Ayyampalayam S, et al. A genome triplication associated with early diversification of the core eudicots [J]. Genome biology, 2012, 13(1): R3.[75] Klee HJ, Giovannoni JJ. Genetics and control of tomato fruit ripening and quality attributes [J]. Annual review of genetics, 2011, 45: 41-59.[76] Vrebalov J, Ruezinsky D, Padmanabhan V, et al. A MADS-Box Gene Necessary for Fruit Ripening at the Tomato Ripening-Inhibitor (Rin) Locus [J]. Science, 2002, 296(5566): 343-346.[77] Vrebalov J, Pan IL, Arroyo AJM, et al. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1 [J]. The Plant Cell Online, 2009, 21(10): 3041-3062.[78] Giovannoni J. Molecular Biology of Fruit Maturation and Ripening [J]. Annual review of plant physiology and plant molecular biology, 2001, 52: 725-749.[79] Wilkinson JQ, Lanahan MB, Yen H-C, et al. An ethylene-inducible component of signal transduction encoded by Never-ripe [J]. Science, 1995, 270(5243): 1807-1809.[80] Tieman DM, Taylor MG, Ciardi JA, et al. The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family [J]. Proceedings of the National Academy of Sciences, 2000, 97(10): 5663-5668.[81] Wang J, Chen G, Hu Z, et al. Cloning and characterization of the EIN2-homology gene LeEIN2 from tomato: Full Length Research Article [J]. Mitochondrial DNA, 2007, 18(1): 33-38.[82] Tieman DM, Ciardi JA, Taylor MG, et al. Members of the tomato LeEIL (EIN3‐like) gene family are functionally redundant and regulate ethylene responses throughout plant development [J]. The Plant Journal, 2001, 26(1): 47-58.[83] Powell AL, Nguyen CV, Hill T, et al. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development [J]. Science, 2012, 336(6089): 1711-1715.[84] Lin Z, Hong Y, Yin M, et al. A tomato HD‐Zip homeobox protein, LeHB‐1, plays an important role in floral organogenesis and ripening [J]. The Plant Journal, 2008, 55(2): 301-310.[85] Barry CS, Blume B, Bouzayen M, et al. Differential expression of the 1‐aminocyclopropane‐1‐carboxylate oxidase gene family of tomato [J]. The Plant Journal, 1996, 9(4): 525-535.[86] Guzman I, Bosland P, O’Connell M. Heat, Color, and Flavor Compounds in Capsicum Fruit [M]//GANG D R. The Biological Activity of Phytochemicals. Springer New York. 2011: 109-126.[87] Hugueney P, Badillo A, Chen HC, et al. Metabolism of cyclic carotenoids: a model for the alteration of this biosynthetic pathway in Capsicum annuum chromoplasts [J]. The Plant Journal, 1995, 8(3): 417-424.[88] Ronen G, Carmel-Goren L, Zamir D, et al. An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato [J]. Proceedings of the National Academy of Sciences, 2000, 97(20): 11102-11107.[89] Smith P. Deciduous ripe fruit character in peppers; proceedings of the PROCEEDINGS OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE, F, 1951 [C]. AMER SOC HORTICULTURAL SCIENCE 701 NORTH SAINT ASAPH STREET, ALEXANDRIA, VA 22314-1998.[90] Frei B, England L, Ames BN. Ascorbate is an outstanding antioxidant in human blood plasma [J]. Proceedings of the National Academy of Sciences, 1989, 86(16): 6377-6381.[91] Wahyuni Y, Ballester A-R, Sudarmonowati E, et al. Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: Variation in health-related compounds and implications for breeding [J]. Phytochemistry, 2011, 72(11–12): 1358-1370.[92] Wang Z, Xiao Y, Chen W, et al. Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis [J]. Journal of integrative plant biology, 2010, 52(4): 400-409.[93] Mazourek M, Pujar A, Borovsky Y, et al. A Dynamic Interface for Capsaicinoid Systems Biology [J]. Plant Physiology, 2009, 150(4): 1806-1821.[94] Stewart CJ, Kang BC, Liu K, et al. The Pun1 gene for pungency in pepper encodes a putative acyltransferase [J]. The Plant journal : for cell and molecular biology, 2005, 42(5): 675-688.[95] Stewart C, Mazourek M, Stellari GM, et al. Genetic control of pungency in C. chinense via the Pun1 locus [J]. Journal of Experimental Botany, 2007, 58(5): 979-991.[96] Walsh JB. How often do duplicated genes evolve new functions? [J]. Genetics, 1995, 139(1): 421-428.[97] del Rosario Abraham-Juárez M, del Carmen Rocha-Granados M, López MG, et al. Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits [J]. Planta, 2008, 227(3): 681-695.[98] Suzuki T, Fujiwake H, Iwai K. Intracellular localization of capsaicin and its analogues, capsaicinoid, in Capsicum fruit 1. Microscopic investigation of the structure of the placenta of Capsicum annuum var. annuum cv. Karayatsubusa [J]. Plant and Cell Physiology, 1980, 21(5): 839-853.[99] Roth C, Rastogi S, Arvestad L, et al. Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms [J]. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2007, 308(1): 58-73.[100] Bennett D, Kirby G. Constitution and biosynthesis of capsaicin [J]. Journal of the Chemical Society C: Organic, 1968: 442-446.[101] Leete E, Louden MC. Biosynthesis of capsaicin and dihydrocapsaicin in Capsicum frutescens [J]. Journal of the American Chemical Society, 1968, 90(24): 6837-6841.[102] González-Jara P, Moreno-Letelier A, Fraile A, et al. Impact of Human Management on the Genetic Variation of Wild Pepper, Capsicum annuum var. glabriusculum [J]. PloS one, 2011, 6(12): e28715.[103] Moscone EA, Scaldaferro MA, Grabiele M, et al. The evolution of chili peppers (Capsicum-Solanaceae): a cytogenetic perspective [J]. Acta Hortic, 2007, 745: 137-170.[104] Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data [J]. Genetics, 2000, 155(2): 945-959.[105] Xu X, Liu X, Ge S, et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes [J]. Nature biotechnology, 2012, 30(1): 105-111.[106] Li Y-h, Zhao S-c, Ma J-x, et al. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing [J]. BMC genomics, 2013, 14(1).[107] Lam H-M, Xu X, Liu X, et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection [J]. Nature genetics, 2010, 42(12): 1053-1059.[108] Kong Q, Zhang G, Chen W, et al. Identification and development of polymorphic EST-SSR markers by sequence alignment in pepper, Capsicum annuum (Solanaceae) [J]. American journal of botany, 2012, 99(2): e59-61.[109] Huang HH, Zhang ZH, Zhang ZH, et al. Analysis of SSRs Information in Capsicum spp. from EST Database [J]. Agricultural Sciences in China, 2011, 10(10): 1532-1536.[110] Portis E, Nagy I, Sasvári Z, et al. The design of Capsicum spp. SSR assays via analysis of in silico DNA sequence, and their potential utility for genetic mapping [J]. Plant Science, 2007, 172(3): 640-648.[111] Nagy I, Stágel A, Sasvári Z, et al. Development, characterization, and transferability to other Solanaceae of microsatellite markers in pepper (Capsicum annuum L.) [J]. Genome / National Research Council Canada = Genome / Conseil national de recherches Canada, 2007, 50(7): 668-688.[112] Sanwen H, Baoxi Z, Milbourne D, et al. Development of pepper SSR markers from sequence databases [J]. Euphytica, 2001, 117(2): 163-167.[113] Pacheco-Olvera A, Hernández-Verdugo S, Rocha-Ramírez V, et al. Genetic Diversity and Structure of Pepper (Capsicum Annuum L.) from Northwestern Mexico Analyzed by Microsatellite Markers [J]. Crop Sci, 2012, 52(1): 231-241.[114] Tajima F. Evolutionary relationship of DNA sequences in finite populations [J]. Genetics, 1983, 105(2): 437-460.[115] Li Y-h, Zhao S-c, Ma J-x, et al. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing [J]. BMC Genomics, 2013, 14(1): 579.[116] Sweeney MT, Thomson MJ, Pfeil BE, et al. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice [J]. The Plant Cell Online, 2006, 18(2): 283-294.[117] Gu X-Y, Foley ME, Horvath DP, et al. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice [J]. Genetics, 2011, 189(4): 1515-1524.[118] Gerats AG, Farcy E, Wallroth M, et al. Control of Anthocyanin Synthesis in PETUNIA HYBRIDA by Multiple Allelic Series of the Genes An1 and An2 [J]. Genetics, 1984, 106(3): 501-508.[119] Stommel JR, Lightbourn GJ, Winkel BS, et al. Transcription Factor Families Regulate the Anthocyanin Biosynthetic Pathway in Capsicum annuum [J]. Journal of the American Society for Horticultural Science, 2009, 134(2): 244-251.[120] Wan H, Yuan W, Ye Q, et al. Analysis of TIR- and non-TIR-NBS-LRR disease resistance gene analogous in pepper: characterization, genetic variation, functional divergence and expression patterns [J]. BMC genomics, 2012, 13: 502.[121] Ko MK, Jeon WB, Kim KS, et al. A Colletotrichum gloeosporioides-induced esterase gene of nonclimacteric pepper (Capsicum annuum) fruit during ripening plays a role in resistance against fungal infection [J]. Plant Mol Biol, 2005, 58(4): 529-541.[122] Jung HW, Kim W, Hwang BK. Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses [J]. Plant Cell Environ, 2003, 26(6): 915-928.[123] Osuna-García JA, Wallroth MM, Waddell CA. Endogenous Levels of Tocopherols and Ascorbic Acid during Fruit Ripening of New Mexican-Type Chile (Capsicum annuum L.) Cultivars [J]. J Agric Food Chem, 1988, 46(12): 5093 -5096. |
|
|