|
|
Effects of Salt-alkali Soil Remediation Agents on Microbial Community Diversity in Salt-tolerant Dandelion (Taraxacum mongolicum) Rhizosphere Soil |
TAN Hai-Xia1,*, PENG Hong-Li1, GE Zhen-Yu2,3, WANG Lian-Long1, XU Yan-Ping2,3, LI Li-Yan2,3,* |
1 Hebei University of Environmental Engineering, Qinhuangdao 066000, China; 2 Leading Biological and Agricultural Limited Company, Qinhuangdao 066000, China; 3 Hebei Agricultural Biotechnology Technology Innovation Center, Qinhuangdao 066000, China |
|
|
Abstract Soil microorganism is one of the indexes to evaluate soil quality in saline-alkali land, and the application of microbial agent is an important measure to improve soil microenvironment. In this study, two treatments were set: control PC (no fertilization) and P2 (saline-alkali soil remediation agent). The saline-alkali soil remediation agent containing Bacillus flexus and Bacillus megaterium were used as test materials. The physical and chemical properties of the rhizosphere soil and the number of culturable microorganisms were determined by conventional methods, and the population structure and diversity of soil microorganisms were determined by high-throughput sequencing technology. The research results showed that the number of culturable bacteria increased by 126.5% and the number of fungi decreased by 27.02%. High-throughput sequencing analysis of 16S rRNA and ITS fragments in the rhizosphere soil showed that the microorganisms in the rhizosphere of dandelion included 418 species of bacteria (26 phyla, 74 genera) and 371 species of fungi (10 phyla, 30 genera). In terms of community structure, the application of P2 increased the relative abundance of Acidobacteria, Ascomycota, Rozellomycota and Mortierellomycota. But the relative abundance of Proteobacteria, Gemmatimonadetes, Chloroflexi and Basidiomycota was decreased. Principal component analysis (PCA) showed that application of fungicides changed the microbial community structure in dandelion rhizosphere soil. Redundancy analysis (RDA) showed that soil organic matter and available phosphorus were the main environmental factors which affected soil microbial community of dandelion rhizosphere. Soil remediation agents improved soil microbial diversity and improved soil microenvironment of dandelion rhizosphere. This study provides the references for planting dandelion in coastal saline alkali land in North China.
|
Received: 13 April 2022
|
|
Corresponding Authors:
*tanhaixia2001@126.com; li.liyan@leadst.cn
|
|
|
|
[1] 鲍士旦. 土壤农化分析[M]. 2005. 北京: 中国农业出版社, pp. 25-110. (Bao S D.Soil and Agricultural Chemistry Analysis[M]. 2005. Beijing: China Agriculture Press, pp. 25-110.) [2] 段淇斌, 赵冬青, 姚拓,等. 2015. 施用生物菌肥对饲用玉米生长和土壤微生物数量的影响[J]. 草原与草坪, 35(02): 54-58. (Duan Q B, Zhao D Q, Yao T, et al.2015. Effects of using biofertilizer on forage maize growth and soil microbial number[J]. Grassland and Turf, 35(02): 54-58.) [3] 杜倩, 李琳, 刘铁男, 等. 2022. 复合菌肥对盐渍土土壤微生物多样性的影响[J].中国农学通报, 38(02): 38-43. (Du Q, Li L, Liu T N, et al.2022. Effects of compound microbial fertilizer on soil microbial diversity in saline soil[J]. Chinese Agricultural Science Bulletin, 38(02): 38-43.) [4] 傅海平, 周品谦, 王沅江,等. 2020. 绿肥间作对茶树根际土壤真菌群落的影响[J]. 茶叶通讯, 47(03): 406-415. (Fu H P, Zhou P Q, Wang Y J, et al.2020. Effects of intercropping different green manures on fungal community characteristics in rhizosphere soil of tea plant[J]. Tea Communication, 47(3): 406-415.) [5] 黄伟, 张俊花, 刘倩男,等. 2019. 微生物菌肥对生菜土壤酶活性和微生物数量的影响[J]. 湖北农业科学, 58(22):54-57+64. (Huang W,Zhang J H, Liu Q N, et al.2019. Effects of the microbial fertilizers on enzymic activity and microorganism in lettuce soil[J]. Hubei Agricultural Sciences, 58(22): 54-57+64.) [6] 胡基华, 张烨, 张淑梅, 等. 2021. 微生物菌肥对寒地大豆根际土壤真菌多样性的影响[J]. 大豆科学, 40(06): 805-812. (Hu J H, Zhang Y, Zhang S M, et al.2021. Effects of microbial fertilizer on fungal diversity of soybean rhizosphere soil in cold region[J]. Soybean Science, 40(06): 805-812.) [7] 李晨华, 张彩霞, 唐立松, 等. 2014. 长期施肥土壤微生物群落的剖面变化及其与土壤性质的关系[J]. 微生物学报, 54(03): 319-329. (li C H, Zhang C X, Tang L S, et al.2014. Effect of long-term fertilizing regime on soil microbial diversity and soil property[J]. Acta Microbiologica Sinica, 54(03): 319-329.) [8] 李帅, 杨敏, 曹惠翔, 等.2021. 连年种植菊芋对滨海盐碱地的生态修复效果与机制[J]. 南京农业大学学报, 44(06): 1107-1116. (Li S, Yang M, Cao H X, et al.2021. Ecological restoration effect and mechanism of continuous-year cultivation of Jerusalem artichoke on coastal saline-alkali land[J]. Journal of Nanjing Agricultural University, 44(06): 1107-1116. ) [9] 林先贵. 土壤微生物研究原理与方法[M]. 2010. 北京: 高等教育出版社, pp. 29-42. ( Lin X G.Principles and Methods of Soil Microbiology Research[M]. 2010. Beijing: Higher Education Press. pp. 29-42.) [10] 刘震, 徐玉鹏, 黄伟, 等. 2020. 苜蓿连作对盐碱土壤微生物群落结构的影响[J].作物研究, 34(06): 557-562, 567.(Liu Z, Xu Y P, Huang W, et al. 2020.Effects of alfalfa continuous cropping on microbial community structure in saline-alkali soil[J]. Crop Research, 34(06): 557-562, 567.) [11] 马垒, 郭志彬, 王道中, 等. 2019. 长期三水平磷肥施用梯度对砂姜黑土细菌群落结构和酶活性的影响[J]. 土壤学报, 56(06): 1459-1470. (Ma L, Guo Z B, Wang D Z, et al.2019. Effect of long-term application of phosphorus fertilizer on soil bacterial community structure and enzymatic activity in lime concretion black soil relative to application rate[J]. Acta Pedologica Sinica, 56(06): 1459-1470. [12] 滕凯, 陈前锋, 周志成, 等. 2020. 烟草连作障碍与土壤理化性质及微生物多样性特征的关联[J]. 微生物学通报, 47(9): 2848-2856. (Teng K, Chen Q F, Zhou Z C, et al.2020. Effect of soil physical and chemical properties and microbial community on continuous cropping obstacles in tobacco field[J]. Microbiology China, 47(9): 2848-2856.) [13] 王超, 李刚, 黄思杰, 等. 2019. 枯草芽胞杆菌菌肥对有机冬瓜根区土壤微生态的影响[J]. 微生物学通报, 46(03):563-576. (Wang C, Li G, Huang S J, et al.2019. Effect of Bacillus subtilis microbial fertilizer on root-zone soil microbial ecology of organic Chinese watermelon[J]. Microbiology, 46(03): 563-576.) [14] 王丹, 赵亚光, 马蕊, 等. 2020. 微生物菌肥对盐碱地枸杞土壤改良及细菌群落的影响[J]. 农业生物技术学报, 28(08): 1499-1510. (Wang D, Zhao Y G, Ma R, et al.2020.Effects of microbial fertilizers on soil improvement and bacterial communities in saline-alkali soils of Lycium barbarum[J]. Journal of Agricultural Biotechnology, 28(08): 1499-1510.) [15] 王艳宇, 刘爽, 李鑫, 等. 2022. 3株耐盐碱促生菌对绿豆根际微生态的影响[J].干旱地区农业研究, 40(01): 139-145. (Wang Y Y, Liu S, Li X, et al.2022. Effects of three saline-alkali tolerant growth-promoting bacteria on the rhizosphere microecology of mung bean[J]. Agricultural Research in the Arid Areas, 40(01): 139-145.) [16] 吴加香, 刘涛, 寸梦壵, 等.2022. 黄草乌间作玉米对其根际微生物群落多样性的影响[J]. 分子植物育种, (1): 1-15. (Wu J X, Liu T, Cun M Z, et al. 2022. Effects of intercropping maize with Aconitum vilmorinianum Kom. on rhizosphere microbial community diversity[J]. Molecular Plant Breeding, (1): 1-15.) [17] 徐双, 柳新伟, 崔德杰, 等. 2015. 不同施肥处理对滨海盐碱地棉花生长和土壤微生物及酶活性的影响[J]. 水土保持学报, 29(6): 316-320. (Xu S, Liu X W, Cui D J, et al.2015. Effect of different fertilization treatments on cotton growth, soil microbes and enzyme activity in saline fields[J].Journal of Soil and Water Conservation, 29(6): 316-320.) [18] 杨惠婷, 冷小云, 石春芳. 2021. 盐碱化土壤细菌群落研究进展[J]. 环境科学与技术, 44(06): 230-236. (Yang H T, Leng X Y, Shi C F.2021. Research progress on bacterial communities in saline-alkali soil[J]. Environmental Science & Technology, 44(06): 230-236.) [19] 苑广伟, 姜峰, 孙玉红, 等. 2021. 草莓根腐病病原真菌的分离纯化及ITS分子鉴定[J]. 现代农业科技, (5): 103-107. (Yuan G W, Jiang F, Sun Y H, et al. 2021. Isolation, purification and ITS molecular identification of pathogenic fungi of strawberry root rot disease[J]. Modern Agricultural Science and Technology, (5): 103-107.) [20] 阎海涛, 殷全玉, 丁松爽, 等. 2018. 生物炭对褐土理化特性及真菌群落结构的影响[J]. 环境科学, 39(05): 2412-2419. (Yan H T, Yin Q Y, Ding S S, et al.2018. Effect of biochar amendment on physicochemical properties and fungal community structures of cinnamon soil[J]. Environmental Science, 39(05): 2412-2419.) [21] 郑立伟, 赵阳阳, 王一冰, 等. 2022. 不同连作年限甜瓜种植土壤性质和微生物多样性[J]. 微生物学通报, 49(01): 101-114. (Zheng L W, Zhao Y Y, Wang Y B, et al.2022. Soil properties and microbial diversity in the muskmelon fields after continuous cropping for different years[J]. Microbiology China, 49(01): 101-114.) [22] Long X E, Yao H Y, Huang Y, et al.2018. Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilising microbial community in a paddy soil[J]. Soil Biology & Biochemistry, 118: 103-114. [23] Wei M, Hu G, Wang H, et al.2017. 35 years of manure and chemical fertilizer application alters soil microbial community composition in a Fluvo-aquic soil in Northern China[J]. European Journal of Soil Biology, 82: 27-34. [24] Xie W J, Wu L F, Wang J S, et al.2017. Effect of salinity on the transformation of wheat straw and microbial communities in a saline soil[J]. Communications in Soil Science and Plant Analysis, 48(12): 1455-1461. [25] Zhang S Y, Fan C, Wang Y X, et al.2018. Salt-tolerant and plant growth-promoting bacteria isolated from high-yield paddy soil[J]. Canadian Journal of Microbiology, 64(12): 968-978. [26] Zheng W, Xue D M, Li X Z, et al.2017. The responses and adaptations of microbial communities to salinity in farmland soils: A molecular ecological network analysis[J]. Applied Soil Ecology, 120: 239-246. |
|
|
|